Topology Qual, Algebraic Topology: Summer 2012

- (1) Let $_g$ denote the closed, orientable, surface of genus. Prove that if $_g$ is a covering space of $_h$, then there is a d 2 Z⁺ satisfying q = d(h 1) + 1.
- (2) Let X be a closed (i.e., compact & boundaryless), orientable \mathbb{Z} dimensional manifold. Prove that if $H_{k-1}(X; \mathbb{Z})$ is torsion-free, then so is $H_k(X; \mathbb{Z})$.
- (3) Let $T^2 = R^2/Z^2$ be the 2{torus, concretely identified as the quotient space of the Euclidean plane by the standard integer lattice. Then any 2 2 integer matrix A induces a map

$$\phi : (R/Z)^2 ! (R/Z)^2$$

by left (matrix) multiplication.

(a) Show that (with respect to a suitable basis) the induced contravariant map

$$\phi^*: H^1(T^2; Z) H^1(T^2; Z)$$

on the cellular cohomology is left multiplication by the transpose of A.

(b) Since T^2 is a closed,Z{oriented manifold, it has a fundamental class, $[T^2]$ 2 $H_2(T^2; \mathbf{Z})$. Prove that

$$\phi_*[T^2] = \det(A) [T^2].$$

(Hint: Use part (a) and the naturality of the cup product under induced maps on homology/cohomology.)

(4) The closed, orientable surface g of genusg, embedded in \mathbb{R}^3 in the standard way, bounds a compact region g (often called a genus g solid handlebod).

Two copies of R, glued together by the identity map between their boundary surfaces, form a closed $3\{\text{manifold}X.\ \text{Compute } H_*(X; Z).$

GT Qual 2012 (Spring) Part II Show All Relevant Work!

- 1) Consider stereographic projection of the unit circle S^1 in \mathbf{R}^2 to \mathbf{R} from the North Pole () and from the South Pole (~).
 - a) Show that $\sim ^{-1}(x) = 1 = x$
- b) Consider the smooth vector eld $\frac{d}{dx}$ on **R**. Using , this induces a smooth vector eld on the circle minus the North Pole. Can it be extended to a smooth vector eld on all of S^1 ?
- 2a) A smooth map F: M! N is a submersion if...
- b) Let M be a compact, smooth 3-manifold. Prove that there is no submersion $F: M! \mathbb{R}^3$.
- 3) Consider D the open unit disk in \mathbf{R}^2 with Riemannian metric

$$g = (\frac{2}{1+x^2+y^2})^2 dx$$
 $dx + (\frac{2}{1+x^2+y^2})^2 dy$ dy

- a) Write down an (oriented) orthonormal frame $(E_1; E_2)$ for D with respect to this metric.
 - b) Write down the associated dual coframe $(\frac{1}{2}, \frac{2}{2})$.
- c) Compute 1 $^{\land}_{\text{D}}$ 2 . Is this the Riemannian volume form (that is, does it agree with the volume formula $^{\circ}$ $\frac{1}{\det(g_{ij})}dx \wedge dy$)?
 - d) Compute the volume (area?) of ${\it D}$ with respect to this metric.
 - e) What have you computed?
- 4) Suppose that f_0 and f_1 are smoothly homotopic maps from X to Y and that X is a