
!
!

Digital PaintChat:
Examining and Expanding

Collaborative Tools for Digital Artists

by Helen Jiang

Boston College Honors Thesis
Advisor: Professor William Ames

May 8, 2012

!
!

Contents

1. Introduction ...1

1.1 What is Digital Art? ...1
1.2 Drawing Tablet

!
!

Abstract

 The digital world has revolutionized virtually every aspect of peoples' lives. Many
professional illustrators have begun to use digital tools in order to simplify their drawing process
and make it more efficient. There are many different software programs that artists use, each
fitted to meet different needs, such as photo manipulation, painting, or animation. Although
digital art is constantly evolving and expanding, and there is little research on how artists interact
with digital media.
 Communication is one of the areas in which technology has had the most profound
change. People from anywhere in the world have the ability to contact each other at a moment's
notice. This reality has lead to new, fruitful collaborations in a variety of fields. Thus far, there
are no fully-functional artist tools that enable direct communication between artists. My thesis
involves the planning and implementation of such a program.
 I first conducted a digital arts survey to gather data on how current digital artists interact
with the programs they are using, the way they use tools that are common among all digital art
software programs, as well as the shortcomings of these tools and digital art in general. The
survey was answered by both amateur and professional artists from online art communities, the
majority of whom have been using art programs for over four years. Afterwards, I began
programming a basic drawing program based on the results of the survey, and added networking
capabilities.

"!
!

1. Introduction

1.1 What is Digital Art?

 Digital Art is defined as any art that was created with the aid of a computer. There are a

multitude of types of digital art, such as Graphic Design and 3D Modeling. The focus of this

thesis is Digital Illustration, which is defined as the use of digital tools under direct manipulation

of the artist to produce 2D images, usually through a pointing device such as a mouse or a

drawing tablet. In simpler terms, an artist uses a mouse or tablet to draw.

 There are many applications that have been developed to aid artists in digital illustration.

They contain a virtual canvas with a large amount of tools and instruments, some meant to

mimic the purpose of tools that traditional artists use, and others that do not exist outside of the

computer. The digital-only tools are what give digital art a distinct look and feel from traditional

art. Unfortunately, there is very little academic research on digital illustration.

1.2 Drawing Tablet

 A drawing tablet is an pointing input device that allows users to hand-draw images onto a

computer. It usually consists of a surface to draw upon and a special drawing pen. Coordinates

on the drawing surface directly correspond to coordinates on the computer screen. Thus, unlike a

mouse, the pen location is not calculated relatively to the original location of the cursor. Aside

from being able to transpose brush strokes easily onto a digital canvas, the drawing tablet's other

most important feature is that of pen pressure detection. With pen pressure enabled, artists can

simulate the effects of light versus heavy strokes on a canvas.

#!
!

1.3 Digital Art Applications

$!
!

graphics meant to convey information, such as maps and icons. Vector images are also not fixed

in resolution, as their mathematical nature allows the artist to zoom without constraints. A well-

known example of a vector program is Adobe Illustrator. The vector-based nature of Adobe

Illustrator makes is difficult for it to be used as a painting program.

1.4 Collaboration

 The idea of a online art collaboration for digital artists is not a new one. In all of its

implementations, however, many crucial features are lacking. There are many collaborative

projects where different artists edit the same canvas. Most of these projects do not support real-

time editing where artists can work at the same time, and those that do only support the most

simple tools.

 The most commonly used "PaintChat" applications where artists draw together over the

internet are through web browsers. Some examples of these are iScribble and Japanese

application ShiPainter. Because they are browser-based tools are rather primitive and there are

limitations based on browser type. None of the web-browser PaintChats by themselves support

pen pressure, and the add-ons that need to be installed in order for pressure to be enabled on

certain drawing boards do not universally work on all platforms and browsers.

1.5 Tools

 Though each digital illustration application features different tools, there are many tools

that are shared between all of them. Applications may implement the tools using different

algorithms, which result in a different look and feel.

%!
!

!
Figure 2: Comparison of Adobe Photoshop toolbar (left) with SAI PaintTool toolbar (right)

 In the Adobe Photoshop toolbar, core tools are shown, sectioned off by the type of utility

they offered. If a tool is clicked and held, a few options for variations of those tools are offered.

For example, if the erase button is clicked and held, the user will be able to access different types

of erase, such as the Background Eraser tool and the Magic Eraser Tool. In the SAI Paint Tool

toolbar, tools are separated between select tools, manipulation of canvas view, and editing tools.

The editing tools section has empty slots which allows users to create their own custom tools.

These custom tools are basically the default tools with certain changed settings that are saved

and renamed to a new tool.

 Tools were important in the survey that I conducted as the first part of my thesis. The first

section of the survey was aimed at evaluating artists' relationship with the tools that were

common among all digital art programs (brush, eraser, paint bucket, zoom, etc).

1.6 Tool Customization

 All digital art programs, to some degree, allow artists to customize tools. In the most

simplistic programs with tool customization, such as Microsoft Paint, the user is able to

&!
!

manipulate the size of the brush tool. In the more complex programs that I am

'!
!

2. The Survey

(!
!

Figure 4

)!
!

- A popular category of suggestions involved color, and tools to help artists choose color.

*!
!

 Many times artists listed specific features of tools such as brushes, selection tools, and

layers that they used the most often. This presented a good perspective on how wide the scope of

each of these tools should be.

Other notable tools were listed as common used by multiple artists:

- The color wheel was once again frequently mentioned, as artists work with color often

and want to be able to switch between and save colors palettes easily

- Move and Zoom tools, in addition to the afore-mentioned flip and rotate, were required

for flexibility in the way the artist viewed their canvas.

2.2 Customizability

 In this section, there was just one question to rank the importance of customizability from

seven commonly customized tools: Brush, Eraser, Color Palette, History, Fill Bucket, Layer and

Zoom.

 The results of this section were very simple; of the seven tools, five of them (Brush,

Eraser, Color Palette, Layer, and Zoom) scored above three on a scale of one to five. This is

especially interesting in the case of the Zoom tool, which usually is not highly customizable in

digital art programs.

"+!
!

Figure 5: With an average score of 3, there was no consensus on the importance of customizability for the
History tool.

 The two that fell under three on the scale were History and Fill Bucket. I had considered

making history more customizable as a new tool to introduce to artist, but this result left me with

""!
!

"#!
!

3. Programming SimplePaint

3.1 Java

 I chose to program the application in Java for its ability to run on any operating system.

Many programs were limited to one operating system, which many artists expressed frustration

with in the Digital Art Tools survey. An example of this would be SAI PaintTool, which was

confirmed by developers to only be available on the Windows operating system. In response to

SAI PaintTool, another company developed Clip PaintLab, which was made to work only on

Mac OS. In addition to this consideration, Java was also the programming language that I was

most familiar with. It has extensive graphics and networking capabilities in its libraries already.

3.2 Program Organization

"$!
!

called, the three layers are all drawn, in the order of backgroundLayer, baseLayer, and

strokeLayer on the very top.

 In my Program I added a PenListener from the JPen library. Although at first I also added

a MouseListener, I eventually used the penButtonEvent method from the PenListener Interface

to detect and differentiate mouse clicks from pen clicks. Because input from the mouse only

included coordinates while input from the pen also included pressure and tilt, I had to program

them separately. The penLevelEvent method from the PenListener Interface detects and runs

when the pen is in close contact with the surface of the drawing tablet. This includes when the

pen is hovering slightly above the surface as well as when the pen is touching the surface. To

"%!
!

3.4 Pen Pressure

 Pen pressure enables artists to create more realistic strokes with their drawing tablets.

One of the biggest complaints of current "paintchat" networking applications is the

incompatibility with pen pressure. I searched for a java library that would help detect pen

pressure from common tablets such as the Wacom Intuos 5 Tablet that I used. On the website

called SourceForge.com, I found a library called JPen that could access drawing tablets and

pointing devices using Java 5. It includes event and listener architecture. Device access is

implemented through providers and conains providers for Linux, Windows, Mac OS X, and the

java system mouse.

 For those operations that would be affected by the pen’s additional inputs of pressure and

tilt, I made sure to make an extra constructor that would store those initial values. The instance

of the operation is initialized when the pen first touches the tablet surface (within

penButtonEvent method from the PenListener Interface). When the pen is dragged, the x-

coordinate, y-coordinate, pen pressure, and tilt are continuously passed into the instance of the

operation (within the penLevelEvent method from the PenListener Interface). A method within

the operation is then called to continuously draw and repaint, which achieves the effect of

varying pen pressure. For a brush stroke, pressure was multiplied against a base size and opacity.

Since pressure was a double from 0 to 1, the base size and opacity were in fact the maximum size

and opacity available and could only be achieved if the user pressed down with maximum

pressure. Though this was not coded into the user interface, it is possible to make either or both

size and opacity static if the user wishes to do so.

"&!
!

3.5 Operations

Features were divided into two categories—those that would affect the image and

"'!
!

3.6 Compositing

 In order to achieve some of the effects I desired in this program, I had to sometimes

manipulate the compositing of the baseLayer and the strokeLayer, especially in manipulating the

alpha values to change opacity. I will first give a brief introduction into how compositing works.

 Composites define how two inputs are blended together mathematically. In Java, the

AlphaComposite class supports standard Porter-Duff compositing rules, which were fully

developed by Porter and Duff in a 1984 paper.

"(!
!

Figure 6: Illustrations the over, in, out, atop, and xor operations outlined by Porter & Duff in the
1984 paper

 Because I had many specific blending properties in mind, there were times when the

")!
!

Figure 7: A diagram illustrating Bresenham's line algorithm

Rather than drawing individual pixels at the locations given by Bresenham’s, the shape of

the brush is drawn there and the locations are stored to support the vector-based backing of the

program.

At first, the stroke was drawn directly onto the BufferedImage that contained the rest of

the image. The effect that this created was undesirable, however—because of the default

SRC_OVER compositing mode, if the stroke was not at full opaqueness (alpha = 1) areas of

intersection would visibly show the overlap. This poses a problem for artists because the effect

gives artists less control over the opacity of the image.

Figure 8: Self-Intersecting BrushStroke when drawn on baseLayer BufferedImage of

SRC_OVER composite

"*!
!

For example, if an artist attempted to cover a larger amount of area with a single stroke

#+!
!

achieve this effect, I had to create a custom composite called MaxAlphaComposite.

MaxAlphaComposite is identical to the SRC Composite in all ways except for how the alpha

value is blended. Instead of automatically taking the alpha of the SRC, it compares alpha of the

SRC to the alpha of the DST_IN and takes the larger one. MaxAlphaComposite achieved the

desired effect, as shown in the figure below.

!"#$%&#'()*+(,-,.(/0"12'()*+(3,!"#$45'()*+(67,

,

,
Figure 10: A similar stroke to that of Figure 9, drawn on the strokeLayer with MaxAlphaCompsite

,
 At the end of the stroke, when the pen or mouse is released, the strokeLayer is drawn

onto the baseLayer. Because the baseLayer has composite SRC_OVER, this preserves the

overlap quality between the new stroke and the rest of the image. After the two BufferedImages

are merged, the strokeLayer is cleared. The brushStroke Operation is then appended to the

History array and written to the ObjectOutputStream if networking is on.

3.8 EraseStroke

 The EraseStroke Operation is much simpler than the BrushStroke, in that it does not

require use of the strokeLayer or any custom composites. The EraseStroke also uses

Bresenham’s algorithm to determine where to draw the brush shape. Though it has no color, it

still contains shape as well as size, opacity, and tilt.

#"!
!

 When the user chooses the erase tool, the composite of the baseLayer is changed from

SRC_OVER to DST_IN. When pixels in the source and destination overlap in “Destination-In”

compositing mode, the alpha form the source is applied to the destination pixels in the

overlapping area. Because this is a little bit backwards from what EraseAlpha, the opacity value

is flipped before being applied so that low pressure from the pen would generate a higher alpha

and thus only erase a little while high pressure from the pen would generate a lower alpha and

erase more. Once another tool is chosen by the user, the baseLayer composite will be changed

back to the default SRC_OVER or to whatever composite is appropriate for the next Operation.

 A slight problem exists with this implementation of EraseStroke. Since the erase is

happening directly to the baseLayer, and since many times the parts of the EraseStroke being

drawn overlap, opacity is hard to control. Usually, even at low pen pressure, because of the

amount of overlaps, the EraseStroke appears to erase to a much lower opacity then expected. An

easy fix has been implemented by simply reducing the effect pen pressure has on the alpha value.

A formal fix—AlphaEraseStroke—was attempted, but still has some bugs. As of writing this

thesis, only EraseStroke is implemented.

3.9 AlphaEraseStroke

 AlphaEraseStroke was an attempt to use the strokeLayer to draw out eraseStrokes rather

than directly erasing onto the baseLayer, similar to the way brushStroke works. In order to do

this, lengthy steps had to be taken. AlphaEraseStroke lets you choose opacity and then remains

the same opacity throughout the stroke, without varying by pen pressure. Size, however, still

changes with pen pressure.

 Within startOperation method, which is only called when the pen first hits the surface of

the tablet, several preparatory steps have to taken. First, a copy of the baseLayer is created and

##!
!

the opacity of the entire copy is reduced by the opacity value of the entire stroke. The purpose of

this copy with reduced alpha value is to serve as the ‘preview’ image as the AlphaEraseStroke is

drawing out. While it is possible to show the stroke all at once after it is finished, there is no

direct way to show the stroke as the pen is dragged across the canvas because the information

would have to come from the baseLayer and draw upon the strokeLayer. In an attempt to work

around this, a custom composite called EraseAlphaComposite was made to read in an image as a

reference raster. The baseLayerCopy is set as the reference raster, and instead of outputting a

blending of SRC and DST_IN, it is a combination of SRC and the reference raster. It should

simply output the pixels of the reference raster at the location of the SRC drawn.

 After the AlphaEraseComposite is set, the draw method operates on the strokeLayer in a

similar fashion to eraseStroke and brushStroke. At the end of the stroke, the strokeLayer is

merged onto the baseLayer. In order for the merge to work properly, a custom composite once

#$!
!

3.10 History & Undo

 The History class contains an ArrayList of type Operation, which keeps track of all
changes made to the canvas. In order to undo, the following steps are taken:

, +;<=>?@A;<='?B.>CBA(<="=B*067,

D)B(?2(EC(<067,
F>?,0+;<=>?@A;<=6,G,

, , =B.*,-,+;<=>?@A;<='HB="=B*0;67,
, , =B.*'?BI>0<=?>JBA(@B?3,K(<BA(@B?67,
, , .B?HB"=?>JBLEIM(<B067,
, , D)B(?"=?>JBA(@B?067,
, N,
, ?B*(;E=067

 The undo function essentially removes the last Operation, clears the canvas, and redraws

everything by going through all the Operations in the history list. This can become slow if many

steps have been taking. A typical digital painting can contain thousands of strokes. In order to

speed up the process, every so often an Operation in the history list will be a keyframe, which

will have a saved copy of the baseLayer(s) so that the redraws can start from that point rather

than the very beginning. The user would be able to set the frequency of keyframes so that they

could better customize the program to fit the needs of their computer.

3.11 Networking

 The program currently requires one computer to run the server separately. The IP address

of the computer must then be entered into any clients that wish to connect to the server. The

server controls one socket and blocks for incoming input. The server keeps a synchronized list of

all clients. Clients connected to the server write Operations to the objectOutputStream, which the

server then sends to all clients other than itself to avoid redrawing over itself. When clients

#%!
!

 A separate History needs to be maintained to keep track of incoming Operations versus

Operations that the user has run from their client canvas. Two different layers type should also

be created—one where both users can edit upon one layer, and another that is only editable by

the owner of the layer (but visible on other clients).

 In the future it may be possible to make the server run continuously on web and let

people connect more easily through that. Currently, only computers within the same network can

connect because of firewall and router issues.

#&

#'!
!

5. References

[1] Sotiris P. Christodoulou, Georgios D. Styliaras: Digital art 2.0: art meets web 2.0
trend. DIMEA 2008: 158-165

[2] Porter, Thomas, and Tom Duff. "Compositing Digital Images." ACM SIGGRAPH Computer
Graphics 18.3 (1984): 253-59. Print.

 [3] Du, Weiming, Zhongyang Li, and Qian Gao. "Analysis of the Interaction between Digital Art
and Traditional Art." 2010 International Conference on Networking and Digital Society (2010):
441-43. Print

 [4] Bresenham, J. E. (1 January 1965). "Algorithm for computer control of a digital plotter". IBM
Systems Journal 4 (1): 25–30. doi:10.1147/sj.41.0025

http://www.informatik.uni-trier.de/~ley/pers/hd/s/Styliaras:Georgios_D=.html
http://www.informatik.uni-trier.de/~ley/db/conf/dimea/dimea2008.html#ChristodoulouS08

