

Face Based Indexing
of Digital Photo Albums

Matt Veino

I. Abstract

 Managing a large collection of digital snapshots -- even for the average amateur

digital photographer -- is a chore. Searching is often limited to captions, but writing a

descriptive caption for each photo is overly tedious. We aim to simplify the management

of a collection of photos by enabling searches on the content of the photographs

themselves while minimizing the amount of supervision by the user. We focus on the

problem of finding faces in photographs. The user identifies a small number of faces in

the photo collection. Once we have these faces, we can run algorithms on other pictures

to search through and find faces in the photographs. Once we have locations of faces, we

will attempt to recognize the individuals.

II. Introduction

 Computer Vision has very interesting applications when it come

disguises such as wigs or fake beards.”1 However, tests in Boston’s Logan Airport

“failed miserably” when it came to detecting terrorists (or, in the test cases, individuals

who were supposed to be recognized by the system). When the system was set to be too

sensitive, it would “recognize” various objects in the scene such as plants and dogs. And

when the system was set to be too precise, it could be fooled by different lighting

conditions or by an individual simply wearing a hat or a pair of glasses. 2 Therefore in

the realm of security, face recognition simply cannot worfrs22hr n wo ucry n.o 8 b” rT ”6 b” rT ””’ ”6 R n ToTc c Th hAhrAyTys40r4,”6 R nlo ucrT noo ucrT
nno ucr ” 8 ”’ rTg

recognize which cluster each belongs to. We could then write this information into a

central database which can be queried to return photographs of particular individuals.

III. Training and Finding Faces in the Images

a. Obtaining Training Images

 I started with my own collection of over six thousand digital images. Out of

these, I chose 200 photographs I felt would be suitable to training a face finding and

recognizing algorithm (with the individuals smiling, facing the camera, etc.). This

brings up the first problem: not all photographs h

large the face is, the distance between the eyes is calculated. Our first crop is slightly

larger than the actual face, because another calculation must be determined: Since we

want all the eyes to be in the same position, we must rotate the image based on the angle

between the two eyes. By taking the arc Tan of the height and width difference we can

determine the angle, and rotate accordingly. Once we do this, we can crop tighter based

on the midpoint of the eyes and the distance between the eyes. The image is then resized

to 120 by 80 (or any size of ratio 3:2) and written in the format

crop_imagenumber_facenumber.jpg. Therefore, for each filename we have access to

which picture it was in and what number face it was. This creates images that look like

the following:

 Although these images are in black and white, masks are also created for the

images which show where the faces occur in each image. Therefore,

 To begin, I wrote a function (getColorHist.m) that scans through all the images

Non Faces:

 As we can see, the outcome from the histograms is favorable because the majority

of the face pixels are located in a separate bin from the non face pixels. Therefore, we

can come up with a probability matrix simply by dividing the face histogram by the sum

of the non face and the face histograms. This results in the following probability matrix:

 We can model this distribution with a single parametric model because the

majority of the face pixels are located in one bin. With the bin indices I was able to

determine that the majority of the face pixels had an a value of 11.5 and a b value of 8.4.

 8

 At this point, a faceness map based on color can be obtained for any

image. The function I created (colorFaceness.m) converts the image to Lab color space,

and using the same values for the min, max, and number of bins, converts the a and b

values into bin indices. These indices are looked up in the parametric faceness model,

and that particular value is set for that pixel. After we go through all the pixels, we’re left

with an image that expresses the faceness for each area of the picture. The following is

an example of a color faceness map:

 In this figure, the dark blue areas sig

Original: Color map:

c) Faceness based on Eigenface Reconstruction

 Another measure of faceness I worked with was eigenface reconstruction. To

begin, each face (obtained from part a) is reshaped to be one long horizontal vector, L1

normalized, and placed in a large matrix by the function faceMatrix.m. We normalize

each face to make it so the values are in the same range of data so they can later be

compared correctly. The matrix created by this function is of size m by n where m is the

number of faces and n is the width times the height that is passed into the function.

 From here, this matrix is passed into

 To obtain a faceness map we go through each pixel much like we did for the color

faceness map. However, essentially what we want to do is try to recreate a portion of the

image around each pixel.

Deviation vs. Distance for Faces: Deviation vs. Distance for Non Faces:

From these two matrices, a probability matrix can be composed by dividing the

face histogram by the sum of the face and non face histograms. The following

probability matrix is created, which we can pass into a function and look up values much

like we did for the color faceness map.

 15

 Since the majority of faces don’t fall in one bin, we will use this non-parametric

model to determine faceness. Now we can look up faceness probabilities based on

eigenfaces much like we did for the color eigenfaces. By calculating the standard

deviation of the original cropped image and the distance from the recreated image to the

origin

small size (resizing five times will reduce a 400x300 image to 80x60) at which there

could be no faces the size of the bounding box.

 At the end of this function, we are left with a faceness map based on eigenface

reconstruction. There should be peaks in places in which faces occur. The following is

an example of a faceness map based on eigenface reconstruction.

d) Creating a Combined Faceness Map

 Once we have these two faceness maps, combining them is done via

multiplication. This simple calculation will work because of what we wanted from each

of the faceness maps. The color faceness ma

returned by either. The result is an image that looks like the following, with the peaks of

color representing what we ultimately want, our faces:

e) Finding the Faces from the Facemap Matrix

There are still some areas of color where faces don’t occur. To correct this, I

looked at the values and obtained a numerical value for what I believed separated faces

from non faces. I wrote the function findFaces.m, which has the faceness matrix as its

only input. It turns the image into a binary image whose values depend on the pre

determined threshold. Once the binary image is obtained, it is passed into a Matlab

function called bwmorph which cleans up the binary image and fills in holes. Then, the

matrix is passed into another Matlab function called bwlabel, which finds connected

components and assigns them all the same value depending on what group a pixel is in.

Then, I run the image through a threshold yet again, getting rid of any small groups that

probably aren’t faces. Ultimately, findFaces will return a matrix with values ranging

from zero to the number of faces in the image.

where the first face occurs, areas where the matrix is two is where the second face occurs,

etc. The following is an example of what is returned by findFaces:

 At this point, for each of these groups we can find a center point of mass, which

will should be the center of the face. For each group, an average x and y value is

determined, and the center of mass will be the center of the face. We now should have

the location of all the faces in the image, and can then crop out these portions for use in

recognition.

IV. “Recognizing” Faces

 The results of this part of my research were somewhat unsuccessful. However,

the algorithm is still interesting enough to detail. To begin, I tried to group the original

cropped faces into groups of the same person. To do this, I worked with the eigenfaces

obtained when training the algorithm.

 Basically, there are many ways to go about grouping the images. I believed the

best (and fastest) way would to be to obtain the face space coordinates of each face, and

 19

plug this data into a k-

 This similarity matrix is then passed into k-means, which returns the indexes and

locations for picture in the cluster. The following is an example of three different clusters

returned as a result of this algorithm.

The first image in these clusters is a representation of the cluster center for each

particular group, and gives us an idea of what in common these faces have. For instance,

in cluster five, most of the people are looking to their right somewhat, and the smiles are

all somewhat similar. Instead of grouping the same people into the same cluster, it’s

grouping people together who are posed the same way and under the same lighting

conditions.

This brings up one of the main reasons why any recognition is difficult. Lighting

conditions, pose variation, and simple disguises can throw

of a homework assignment completed for Professor Martin’s Computer Vision class, and

it worked quite well since the photos were all shot under lab conditions. But airports, and

as I’ve found out in my photo album, everyday conditions, don’t make good photographs

to be used in face recognition. Unfortunately, the variables which I believed would be

mainly constant in a photo album turned out to be more variable than hoped.

V. Discussion (Successes and Failures)

 When viewing the research as a whole, the project was a moderate success. The

method of finding a face based on color seems to be a pretty good indicator of where a

face could occur. Yet it’s the other method of finding faces, the eigenface reconstruction

method, in which most of the problems occur. The combination of the two faceness

algorithms produces pretty good results (it usually finds most of the faces) but I feel this

is more of a result of the color algorithm than the eigenface algorithm. While the

multiplication of these two matrices does get rid of the majority of the false positives,

when looking at the facemap from eigenface reco

 Another problem with the eigenface reconstruction was determining the right size

for the eigenfaces and the bounding box that travels through the pictur

 The biggest problem with the finding faces is that if the threshold is incorrect, it

will either recognize separate faces as one face or it may break down one face into

separate segments, and therefore more than one face (for example, it may find the two

cheeks as two separate faces because they’re two peaks, but our threshold is too high so it

thinks it’s two separate faces). Another problem is when two faces are very close

together, it ha

positives, as long as it can be optimized to not find faces in areas where a skin tone

occurs, the combination of these two will wipe out the false positives.

 As far as recognition of the faces, a lot of work has to be done to optimize this.

The algorithm I used may not even be the right tool for the job; other options should be

researched to see if they can get the job done.

 The algorithm should also be optimized to run faster. As it is written now, it takes

two to three minutes per image to merely find the faces. This will not be fast enough for

a large photo album. Ideally, a face finding algorithm should have a runtime of less than

10 seconds per image. Of course, computers are getting faster each year, but we don’t

want this to be an excuse to have slow code.

 Overall, I’d say the proj

 j

function [] = facialPoints()
% [] = facialPoints()
% Reads in files 1.jpg -> 100.jpg for purposes of locating faces
% Click the left eye, then the right eye, then the nose. Press enter
when
% finished choosing all the points in an image

for I=1:100
 fid = fopen('facialpoints.txt','a');
 fprintf(fid,'%d\n',I);
 fclose(fid);
 im = rgb2gray(imread([int2str(I), '.jpg']));
 figure(1);clf;imagesc(im);truesize;axis image;colormap gray;
 [a,b] = ginput;
 fid = fopen('facialpoints.txt','a');

fprintf(fid,'%5d',a);fprintf(fid,'\n');fprintf(fid,'%5d',b);fprintf(fid
,'\n');
 fclose(fid);
end

 26

function [] = getFaces()
% function [] = getFaces()
% Uses facialpoints.txt, created by facialPoints.m, to create cropped
% images for each face in the picture

a = dlmread('facialpoints.txt');
index=0;

for I=1:100
 [q,numfaces] = size(find(a((3*I)-1,:)~=0));
 numfaces=numfaces/3;
 filename = [int2str(I) , '.jpg'];
 im = rgb2gray(double(imread(filename))/255);
 im = padarray(im,[200 200], 0, 'both');
 for J=1:numfaces
 index = index+1;
 fid = fopen('index.html','a');
 xs=a(3*I-1,(3*J)-2:(3*J));
 ys=a(3*I,(3*J)-2:(3*J));
 xs = xs + 200;
 ys = ys + 200;
 points = [xs ; ys]; %The 3 points are now in points, for
the face we have
 dist = sqrt((points(1,1)-points(1,2))^2 + (points(2,1) -
points(2,2))^2);
 midpoint = [mean([points(1,1) points(1,2)]) mean([points(2,1)
points(2,2)])];

 %Now we'll find the angle
 angle = atan2(points(2,2)-points(2,1),points(1,2)-
points(1,1));
 angle = angle * (180/pi);
 angles(index)=angle;
 width = round(1 * dist);
 width = width + (1-mod(width,2));
 height = round(1.5 * dist);
 height = height + (1-mod(height,2));
 RECT = [midpoint(1)-width midpoint(2)-height width*2
height*2];
 cropped = imcrop(im,RECT);
 [y,x] = size(cropped); midpt = [x/2 y/2];

 %Now we'll rotate
 cropped = imrotate(cropped,angle,'bicubic', 'crop');
 cropped = imcrop(cropped, [midpt(1)-width/2 midpt(2)-height/3
width height]);

 cropped = imresize(cropped,[120 80], 'bicubic');
 figure(1);clf;imagesc(cropped);colormap gray;axis
image;truesize;
 croppedname = ['crop', int2str(I) , '_' , int2str(J), '.jpg'
];
 %print('-djpeg',croppedname);
 %nor = cropped - min(cropped(:));
 %normalized = nor / max(nor(:));
 imwrite(cropped,croppedname,'jpeg');

 27

function [A] = faceMatrix(width,height)
% function [] = faceMatrix()
% OUTPUT:
% A : A matrix of all the crop*.jpg faces in the directory
% M by N dimensions, M is the number of faces
% S : A similarity

files = dir('crop*.jpg');
[numFaces,x] = size(files);
A = zeros(numFaces,width*height);
%filt = d2gauss(8,5,8,5,0);
for I=1:numFaces%91
 im = double(imread(files(I).name))/255;
 im = imresize(im, [height width], 'bilinear');
 im = im / sum(abs(im(:)));
 %im = imfilter(im,filt);
 %figure(1);clf;imagesc(im);axis image;truesize;colormap gray;
 A(I,:) = reshape(im,1,width*height);
end

 29

function [p,x,y,faceHist,noFaceHist] =
getColorHist(bins,amin,amax,bmin,bmax);
%
%

txt = dlmread('facialpoints.txt');
index=0;
faceHist=zeros(bins+1,bins+1);
noFaceHist=zeros(bins+1,bins+1);
mina = 9999; maxa = -9999;
minb = 9999; maxb = -9999;

for I=1:100
 [q,numfaces] = size(find(txt((3*I)-1,:)~=0));
 numfaces=numfaces/3;
 filename = [int2str(I) , '.jpg'];
 im = imread(filename);
 %im = padarray(im,[200 200], 0, 'both');
 [one,two,three] = size(im);
 mask = zeros(one,two);
 for J=1:numfaces
 index = index+1;
 xs=txt(3*I-1,(3*J)-2:(3*J));
 ys=txt(3*I,(3*J)-2:(3*J));
 %xs = xs + 200;
 %ys = ys + 200;
 points = [xs ; ys]; %The 3 points are now in points, for
the face we have
 dist = sqrt((points(1,1)-points(1,2))^2 + (points(2,1) -
points(2,2))^2);
 midpoint = [mean([points(1,1) points(1,2)]) mean([points(2,1)
points(2,2)])];

 width = round(1 * dist);
 width = width + (1-mod(width,2));
 height = round(1.5 * dist);
 height = height + (1-mod(height,2));
 RECT = [midpoint(1)-(width/2) midpoint(2)-(height/3) width
height];
 %im = imcrop(im,RECT);
 %figure(2);clf;imagesc(im);axis image;truesize;
 RECT = round(RECT);
 if RECT(2)+height >480
 RECT(4) = height - mod(RECT(2)+height,480);
 end
 if RECT(1)+width >6400
 RECT(3) = height - mod(RECT(1)+height,640);
 end

mask(RECT(2):(RECT(2)+RECT(4)),RECT(1):(RECT(1)+RECT(3)))=1;
 end
 I
 [L,a,b] = RGB2Lab(im);
 %size(mask)
 %figure(1);clf;imagesc(mask);axis image;truesize;
 %Now we have the mask, we're going to plot the a and b values now
 %imwrite(mask,['mask' int2str(I) '.jpg'],'jpeg');

 30

% a=a+100;b=b+100;

 if max(a(:))>maxa
 maxa=max(a(:));
 end
 if min(a(:))<mina
 mina=min(a(:));
 end
 if max(b(:))>maxb
 maxb=max(b(:));
 end
 if min(b(:))<minb
 minb=min(b(:));
 end

% a = round(a);b = round(a);

 [one,two,three]=size(im);
 for I=1:one
 for J=1:two
 aval = 1+floor(bins*(a(I,J)-(amin))/(amax-(amin)));
 bval = 1+floor(bins*(b(I,J)-(bmin))/(bmax-(bmin)));
 if aval>bins
 aval=bins;
 end
 if aval<1
 aval=1;
 end
 if bval>bins
 bval=bins;
 end
 if bval<1
 bval=1;
 end
 if mask(I,J) == 0
 noFaceHist(aval,bval)=noFaceHist(aval,bval)+1;
 end
 if mask(I,J) == 1
 faceHist(aval,bval)=faceHist(aval,bval)+1;
 end
 end
 end
end
x = linspace(amin,amax,bins);
y = linspace(bmin,bmax,bins);
figure(1);imagesc(x,y,log(1+faceHist));colorbar;title('Face
Histogram');
figure(2);imagesc(x,y,log(1+noFaceHist));colorbar;title('Not-Face
Histogram');
p = faceHist ./ (1 + faceHist + noFaceHist);
figure(3);imagesc(x,y,p);colorbar;title('Probability of Face');
[mina maxa minb maxb]

 31

function [eigFaceHist,eigNoFaceHist,p] =
getEigHist(bins,eigFaces,meanFace,width,height);
%function [eigFaceHist,eigNoFaceHist] =
getEigHist(bins,eigFaces,meanFace,width,height);
%

eigFaceHist=zeros(bins+1,bins+1);
eigNoFaceHist=zeros(bins+1,bins+1);
mindev = 0; maxdev = .4;
mindist = .04; maxdist = .7;
%bigmatrix = zeros(101,390*580);
% mina=9999;maxa=-9999;minb=9999;maxb=-9999;

for I=50:100
 counter=1;
 filename = [int2str(I) , '.jpg'];
 im = rgb2gray(double(imread(filename))/255);
 %im = padarray(im,[200 200], 0, 'both');
 h = fspecial('gaussian',31,4);
 im = imfilter(im,h);
 [m,n] = size(im);
 filename2 = ['mask' int2str(I) '.jpg']
 mask = double(imread(filename2))/255;

 topleft = [(height/2)+1 (width/2)+1];
 bottomright = [m-(height/2) n-(width/2)];

 for I= topleft(1):bottomright(1)
 for J= topleft(2):bottomright(2)
 RECT = [J-(width/2) I-(height/2) width-1 height-1];
 thispic = imcrop(im,RECT);

 %figure(1);clf;imagesc(thispic);axis image;truesize;
 imbefore = thispic;
 thispic = thispic / sum(abs(thispic(:)));
 thispic = reshape(thispic,1,width*height);

 %subtract the mean face
 im2 = double(thispic) - meanFace;
 myWeights = im2 * eigFaces';
 recreatedFace = meanFace + myWeights*eigFaces;

 dev = std(imbefore(:));
 dist = sum(abs(thispic - recreatedFace));
 %bigmatrix(I,counter) = dev;bigmatrix(I+1,counter)=dist;
 counter=counter+1;

 devval = 1+floor(bins*(dev-(mindev))/(maxdev-(mindev)));
 distval = 1+floor(bins*(dist-(mindist))/(maxdist-
(mindist)));
 if devval>bins
 devval=bins;
 end
 if devval<1
 devval=1;
 end
 if distval>bins

 32

 distval=bins;
 end
 if distval<1
 distval=1;
 end
 if mask(I,J) == 0

eigNoFaceHist(devval,distval)=eigNoFaceHist(devval,distval)+1;
 end

function [colorfacemap] = colorFaceness(im,p2);
%INPUT
% im - color image received directly from just imread
%

amin=-60;bmin=-60;
amax=80;bmax=80;
bins=45; sigma = 4;

h = fspecial('gaussian',31,3.5);
im = imfilter(im,h);

[m,n,dontcare] = size(im);
colorfacemap = zeros(m,n);
[L,a,b] = RGB2Lab(im);
for I=1:m
 for J=1:n
 aval = 1+floor(bins*(a(I,J)-(amin))/(amax-(amin)));
 bval = 1+floor(bins*(b(I,J)-(bmin))/(bmax-(bmin)));
 %aval = a(I,J); bval = b(I,J);
 %prob = sqrt((aval-11.5556)^2 + (bval - 8.4444)^2);
 prob = p2(aval,bval);
 colorfacemap(I,J) = prob;%exp(-prob.^2/(2*sigma^2));
 end
end
figure(1);imagesc(colorfacemap);axis image;truesize;title('Faceness of
image based on color');

 34

function mymatrix = eigenFacenessProb(im,
eigFaces,meanFace,width,height,p);
%function mymatrix = eigenFacenessProb(im,
eigFaces,meanFace,width,height,p);
%INPUT
% im : a grayscale image
% eigFaces: the eigenFaces from PCA
% meanFace: the meanFace from PCA
% width,height: the width and height of the box to use
%OUTPUT
% mymatrix : A matrix of the "faceness" of each pixel

[m,n] = size(im);
counter=0;counter2=1;

h = fspecial('gaussian',31,4);
im = imfilter(im,h); mymin = 9999; mymax = -9999;

 counter=counter+1;
 topleft = [(height/2)+1 (width/2)+1];
 bottomright = [m-(height/2) n-(width/2)];
 matrix = zeros(m-height,n-width);

 for I= topleft(1):bottomright(1)
 for J= topleft(2):bottomright(2)
 RECT = [J-(width/2) I-(height/2) width-1 height-1];
 thispic = imcrop(im,RECT);
 [matrix(I-(height/2),J-(width/2)),recreatedFace] =
faceVal(thispic,eigFaces,meanFace,width,height,counter,I,J,p);
 end
 I
 end

 if counter == 1
 mymatrix = matrix;
 end
 writepic=1-normalize(matrix);

 %********Uncomment the next line if you're making a movie
 %movie2avi(M,['facemovie.avi'],'fps',10);

 imwrite(normalize(writepic),['faceness' int2str(counter)
'.jpg'],'jpeg');
 fid = fopen('faceness.htm','a');
 fprintf(fid, '<img src="');fprintf(fid,'%s',['faceness'
int2str(counter) '.jpg']);
 fprintf(fid,'">
');
 fclose(fid);
 im=imresize(im,size(im)/sqrt(2),'bilinear');
 [m,n]=size(im);
 %end

function [val,recreatedFace] =
faceVal(im,eigFaces,meanFace,width,height,counter,I,J,p);
%
%

 35

%
mindev = 0; maxdev = .4;
mindist = .04; maxdist = .7; bins = 45;
imbefore = im;
im = im / sum(abs(im(:)));
im = reshape(im,1,width*height);

%subtract the mean face
im2 = double(im) - meanFace;
%Take the dot product to determine the weights
myWeights = im2 * eigFaces';
%Now recreate the face by multiplying the weights and eigenfaces and
adding
%to the meanFace
recreatedFace = meanFace + myWeights*eigFaces;
dev = std(imbefore(:));
dist = sum(abs(im - recreatedFace));
devval = 1+floor(bins*(dev-(mindev))/(maxdev-(mindev)));
distval = 1+floor(bins*(dist-(mindist))/(maxdist-(mindist)));
val = p(devval,distval);

 36

function [facemap,binFaces,numFaces] = getFaceness(im,colProb,eigProb);
%function facemap = getFaceness(im,colProb,eigProb);
%
%INPUT
% im - An image read directly from imread
% colProb - The probability the pixel is a face based on color
(Saved as p2)
% eigProb - The probability the box is a face based on STD/dist to
face
% space (saved as p3)

colorFacemap = colorFaceness(im,colProb);

im = rgb2gray(double(im)/255);

function [faceness] = combineFaceness(eigFaceness,colFaceness)
%
%
%

[m,n] = size(eigFaceness);
[m2,n2] = size(colFaceness);

eigFaceness = padarray(eigFaceness,[(m2-m)/2 (n2-n)/2],0,'both');

faceness = (eigFaceness) .* (.5*colFaceness);
figure(4);imagesc(faceness);axis image;truesize;title('Combination of
color and eigenface faceness');

 38

function [eigenfaces,facespace,meanFace] = PCA(numeigs,A);
%function [eigenfaces,facespace,meanFace] = PCA(numeigs,A);
%INPUTS
% numeigs : The number of eigenfaces to return
% A : An m x n matrix where the rows correspond to one face image and
n
% is the number of faces
%OUTPUTS
% eigenfaces: the eigenFaces returned from svd
% facespace: the weights for each of the faces
% meanFace: the average face

meanFace = mean(A);
[m,n] = size(A);
%figure(1);clf;imagesc(reshape(meanFace',120,80));axis
image;truesize;colormap gray;
% norm = meanFace - min (meanFace(:)); normmean = norm / max (
norm(:));
% imwrite(normmean,'meanFace.jpg','jpeg');
%
%
% fid = fopen('eigfaceindex.html','a'); fprintf(fid,'<img
src="meanFace.jpg">'); fclose(fid);

for I=1:m
 A(I,:) = A(I,:) - meanFace;
end

%Find the eigenvectors of A
[u,s,v] = svd(A',0);
[a,b] = size(u);

% �anFa 1el(*7clof(fid,'<img'%s',ent2str(IAlof(fid,'<img''jpe">\n
*L (*M m* y* l(P(()R *M)(P(% (()(P(% p(ed.PR%).eP)s**1) *9 [*LP(% ((*,* fid);

% end
% diagonal = diag(eigvals);
% cumul = cumsum(diagonal);
% figure(1);hold on;
% for I=1:numeigs
% plot(I,cumul(I),'rx');
% end

eigenfaces = zeros(numeigs,n);
for I=1:numeigs
 eigenfaces(I,:) = u(:,I)';
end

facespace = zeros(m,numeigs);
for I=1:m
 for J=1:numeigs
 facespace(I,J) = dot(A(I,:),eigenfaces(J,:));
 end
end

 40

function [S] = similarityMatrix(D)
% function [S] = similarityMatrix(faceSpace,eigFaces,meanFace)
% INPUT :

function [index,loc] = pairCluster(S,k,clusters)
%
%
%
%

[u,s,v] = svd(S);
[m,n] = size(u);
eigvect = zeros(k,m);
for I=1:k
 eigvect(I,:) = u(:,I)';
end

[index,loc] = kmeans(eigvect',clusters,'Replicates',20,
'EmptyAction','singleton','Display','iter');

 43

function [] =
makeClusterPage(kmeaned,loc,eigFaces,meanFace,pagename,desc)
% function [] =
makeClusterPage(kmeaned,loc,faceSpace,meanFace,pagename,desc)
% INPUT
% kmeaned : the index received from kmeans
% loc : the loc received from kmeans
% pagename: the name of the output index page (without .htm)
% desc : a string description of the page

pics = dir('*_*_*.jpg');
[m,n] = size(kmeaned);
fid = fopen([pagename '.htm'],'a');
fprintf(fid,'<font size="+3"');fprintf(fid,
desc);fprintf(fid,'<p>');
fclose(fid);
for I=1:max(kmeaned)
 %recreateFaceIm(loc(I,:),pagename,I);
 recreateFaceK(loc(I,:),pagename,eigFaces,meanFace,I);
 for J=1:m
 if kmeaned(J)==I
 fid = fopen([pagename '.htm'],'a');
 fprintf(fid, '<img
src="');fprintf(fid,'%s',pics(J).name);fprintf(fid,'">\n');
 fclose(fid);
 end
 end
 fid = fopen([pagename '.htm'],'a');
 fprintf(fid,'<p>');
 fclose(fid);
 end

 44

function [] = recreateFaceK(loc,pagename,eigFaces,meanFace,J)
%INPUTS:
% loc : the loc returned by kmeans
% pagename: the name of the html file
% eigFaces: the eigenFaces from PCA
% meanFace: the meanFace from PCA
% J : the number that's put after the filename

recreatedA = meanFace;
[dontcare,numeigs] = size(loc);
for I=1:numeigs
 recreatedA = recreatedA + (loc(1,I) * eigFaces(I,:));
end
myim = reshape(recreatedA,120,80); myim = normalize(myim);
imwrite(myim,[pagename int2str(J) '.jpg'],'jpeg');

fid = fopen([pagename '.htm'],'a');
fprintf(fid, 'Cluster
');fprintf(fid,'%s',int2str(J));fprintf(fid,':\n');
fprintf(fid, '<img src="');fprintf(fid,'%s',[pagename int2str(J)
'.jpg']);fprintf(fid,'">\n');
fclose(fid);

 45

 46

function [] = recreateFaceIm(myim,pagename,I);
% [] = function recreateFaceIm(loc,pagename);
% Used to recreate a face from image pixels
%INPUT
% myim : a 1x9600 matrix image
% pagename: name of the index page made
% I: number put after the filename

 myim = reshape(myim,120,80); myim = normalize(myim);
 imwrite(myim,[pagename int2str(I) '.jpg'],'jpeg');

fid = fopen([pagename '.htm'],'a');
fprintf(fid, 'Cluster
');fprintf(fid,'%s',int2str(I));fprintf(fid,':\n');
fprintf(fid, '<img src="');fprintf(fid,'%s',[pagename int2str(I)
'.jpg']);fprintf(fid,'">\n');
fclose(fid);

