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Abstract

We study the informational content of factor structures in discrete triangular systems. Factor
structures have been employed in a variety of settings in cross sectional and panel data models,
and in this paper we formally quantify their identifying power in a bivariate system often
employed in the treatment e�ects literature. Our main �ndings are that imposing a factor
structure yields point identi�cation of parameters of interest, such as the coe�cient associated
with the endogenous regressor in the outcome equation, under weaker assumptions than usually
required in these systems. In particular, we show that an exclusion restriction, requiring an
explanatory variable in the outcome equation to be excluded from the treatment equation, is no
longer necessary for identi�cation. Under such settings, we propose a rank estimator for both
the factor loading and the causal e�ect parameter that are root-n consistent and asymptotically
normal. The estimator's �nite sample properties are evaluated through a simulation study.
We also establish identi�cation results in models with more general factor structures, that are
characterized by nonparametric functional forms and multiple idiosyncratic shocks.

Keywords: Factor Structures, Discrete Choice, Causal E�ects.

1 Introduction

Factor models (or structures) see widespread and increasing use in various areas of econometrics.

This type of structure has been employed in a variety of settings in cross sectional, panel and time

series models, and have proven to be a 
exible way to model the behavior of and relationship between

unobserved components of econometric models. The baseline idea behind factor models is to assume

that the dependence across the unobservables is generated by a low-dimensional set of mutually

independent random variables (or factors). The applied and theoretical research in econometrics

employing factor structures is extensive. In particular, these models are often used in the treatment

� We are thankful to seminar participants at Arizona State University, Emory, Michigan State, Shanghai University
of Finance and Economics, University of Arizona, and conference participants at the 2015 SEA meetings for helpful
comments. Zhang acknowledges the �nancial support from Singapore Ministry of Education Tier 2 grant under grant
no. MOE2018-T2-2-169 and the Lee Kong Chian fellowship.
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e�ect literature as a way to identify the joint distribution of potential outcomes from the marginals,

and then recover the distribution of treatment e�ects from this joint distribution. 1 Factor models

have been used in a number of di�erent contexts in applied microeconomics. Notably, factor models

have been used in the context of earnings dynamics (Abowd and Card 1989, Bonhomme and

Robin 2010), estimation of returns to schooling and work experiences (Ashworth, Hotz, Maurel,

and Ransom 2017), as well as cognitive and non-cognitive skill production technology (Cunha,

Heckman, and Schennach 2010), among others. All of these papers, with the notable exception of

Cunha, Heckman, and Schennach (2010), rely on linear factor models where the unobservables are

assumed to be given by the sum of a linear combination of mutually independent factors and an

idiosyncratic shock.

In this paper we bring together the literature on factor models with the literature on the

identi�cation and estimation of triangular binary choice models (Chesher 2005, Vytlacil and Yildiz

2007, Shaikh and Vytlacil 2011, Han and Vytlacil 2017) by exploring the informational content

of factor structures in this class of models. Focusing on this class can be well motivated from

both an empirical and theoretical perspective. From the former, many treatment e�ect models

�t into this framework as treatment is typically a binary and endogenous variable in the system,

whose e�ect on outcomes is often a parameter the econometrician wishes to conduct inference

on. From a theoretical perspective, inference on this type of system can be complicated, if not

impossible without strong parametric assumptions, which may not be re
ected in the observed

data. A semiparametric approach to these models, while desirable from a theoretical point of view

because of its generality, often fails to achieve identi�cation of parameter, or at best only do so in

sparse regions of the data, thus making inference impractical in practice. In this context, imposing

a factor structure may be a useful \in-between" setting, which, at the very least, can be used to

gauge the sensitivity of the parametric approach to their stringent assumptions.

We impose a particular factor structure to the two unobservables in this system and explore

the informational content of this assumption. Speci�cally, we assume that the unobservables from

the treatment equation (V ) and the outcome equation (U) are related through the following factor

model:

U = 
 0V + �

where � is an unobserved random variable assumed to be distributed independently ofV .2 Our

main �nding in this case is that there is indeed informational content of factor structures in the

sense that, in contrast to prior literature - notably Vytlacil and Yildiz (2007) - one no longer

requires an additional exclusion restriction nor the strong support conditions that are needed for

1See Abbring and Heckman (2007) for a extensive discussion of factor structures and prior studies using these

models in the context of treatment e�ect estimation.
2While this is our baseline speci�cation, we also examine the informational content of more general factor structures

involving nonparametric relationships between unobservables or multiple idiosyncratic errors.
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identi�cation in these models without the factor structure. Importantly, our identi�cation results

are constructive and translate directly into a rank based estimator of the coe�cient associated with

the binary endogenous variable.

The rest of the paper is organized as follows. In the next section we formally describe the

triangular system with our factor structure, and discuss our main identi�cation results for the pa-

rameters of interest in this model. Section 3 then proposes the estimation procedure and establishes

its asymptotic properties. Section 4 explores identi�cation in more complicated factor structure

models which involve nonparametric relationships between unobservables or multiple idiosyncratic



restrictions on the unobserved variables in the model, (U; V). Such parametric restrictions, such as

the often assumed bivariate normality assumption, are not robust to misspeci�cation in the sense

that any estimator of � 0 based on these conditions will be inconsistent if (U; V) have a di�erent

bivariate distribution.

The established di�culty of identifying � 0 in semi parametric, i.e., \distribution free" models,

and the sensitivity of its identi�cation to misspeci�cation in parametric models is what motivates

the factor structure we add to the above model in this paper. Speci�cally, to allow for endogeneity

in the form of possible correlation betweenU; V, we augment the model and add the following

equation:

U = 
 0V + � (2.3)

where � is an unobserved random variable, assumed to be distributed independently of (V; Z1; Z2; Z3),

and 
 0



nonparametrically identify the two marginals by assuming the existence of a full support regressor

that is common to both equations. In contrast, our approach does not rely on the existence of a

full support common regressor. Under the factor structure assumed in this paper, we bypass the

nonparametric identi�cation of the marginals as a whole and directly consider the identi�cation of

the structural parameters. It follows that our model cannot be nested by the one-parameter copula

model considered by Han and Vytlacil (2017). On the other hand, there exists one-parameter

copula models that cannot be decomposed into linear factor structures.4 This implies that our

model does not nest Han and Vytlacil (2017) either.

To simplify the exposition of our strategy, in this and the following sections we will focus

exclusively on the parameters� 0; 
 0 and denote the linear indices byX 1 � Z 0
1� 0 + Z 0

3� 0 and

X � Z 0� 0, where Z = ( Z1; Z2). In particular, we treat � 0 as known. In practice, � 0 can be

identi�ed and consistently estimated in a �rst step using a semi-parametric single index estimator

such as the one proposed by Klein and Spady (1993). In addition, at the end of this section, we

note that we can identify � 0 and � 0 simultaneously with � 0. Then (2.1) and (2.2) are simpli�ed to

Y1 = 1f X 1 + � 0Y2 � U > 0g (2.4)

and

Y2 = 1f X � V > 0g: (2.5)

Our proof will be based on the AssumptionsA1 -A5 we state here:

A1 The parameter � 0 � (� 0; 
 0) is an element of a compact subset of< 2.

A2 The vector of unobserved variables, (U; V;�) is continuously distributed with support on R3 and

independently distributed of the vector (Z1; Z2; Z3). Furthermore, we assume the unobserved

random variables � ; V are distributed independently of each other.

A3 X is continuously distributed with absolute continuous density w.r.t. Lebesgue measure. The

density is bounded and bounded away from zero on any compact subset of its support.

A4 For any constant c, P(X � ~X = cjX 1 + � 0 � 
 0X = ~X 1 � 
 0 ~X ) < 1, where (~X; ~X 1) are an

independent copy of (X; X 1).

A5 Supp(X 1 + � 0 � 
 0X ) \ Supp(X 1 � 
 0X ) 6= ; .

Before turning to our main identi�cation result, a couple of remarks are in order.

4For instance, suppose that (U; V ) has a Gaussian copula with correlation � , and that the marginal distributions

of U and V are uniform [0; 1]. It then follows that, denoting by �( :) the standard normal cdf.,
�
� � 1(U); � � 1(V )

�

is bivariate normal with correlation � , which in turn yields the following non-linear relationship between U and V :

U = �
�
� � � 1(V ) + W

�
, where W is normally distributed and independent from V .
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Further assume we can identify� 0, and thus, can treat X as an observable. Then, we can identify

the choice probability

P ij (z1; z3; x) = P rob(Y1 = i; Y2 = j jZ1 = z1; Z3 = z3; X = x)

and its derivative w.r.t. x, i.e., @2P ij (z1; z3; x). Then, by the same argument, we can show that

@2P11(Z1; Z3; X )=f V (X ) + @2P10(~~Z1; ~Z3; ~X )=f V ( ~X ) = 0

() Z 0
1� 0 + Z 0

3� 0 + � 0 � 
 0X � ( ~Z 0
1� 0 + ~Z 0

3� 0 � 
 0 ~X ) = 0 :

Then, given su�cient variation in X , we can identify (� 0; � 0) along with ( � 0; 
 0) even when all

elements ofZ1 and Z3 are discrete.6

An important takeaway from this result is that imposing our factor structure yields point-

identi�cation under weaker support condition when compared to the existing literature, and does

not require the second exclusion restriction either. In particular, our results yield point-identi�cation

of the parameters of interest even in situations where all of the regressors from the outcome equa-

tion are discrete. Interestingly, this indicates that, from the selection equation combined with the

factor structure that we impose here, we can overturn the non-identi�cation result of Bierens and

Hartog (1988) which would apply to the outcome equation alone.

3 Estimation and Asymptotic Properties

The previous section established a point identi�cation result. The identi�cation result is construc-

tive in the sense that it motivates an estimator for for the parameters of interest which we describe

in detail here.

As we did in Section 2, to simplify exposition, in the following we focus exclusively on the

parameters� 0; 
 0. Recall the choice probabilitiesP ij (x1; x) = P rob(Y1 = i; Y2 = j jX 1 = x1; X = x)

and its second derivative @2P ij (x1; x), which can be estimated as we describe below. Another

function needed for our identi�cation result is the density function of the unobserved term V ,

denoted by f V (�). This is also unknown, but from the structure of our model can be recovered from

the derivative with respect to the instrument Z of E [Y2jZ ], and hence is estimable from the data.

Note that the proof of Theorem 2.1 shows that the sign of the index evaluated at twodi�erent

regressor values, which we denote here byX and ~X is determined by the choice probabilities via

@2P11(X 1; X )=f V (X ) + @2P10( ~X 1; ~X )=f V ( ~X ) � 0 () X 1 + � � 
X � ( ~X 1 � 
 ~X ) � 0:

6An alternative approach to identifying this parameter can be found in Lewbel (2000). In his approach a second

equation to model the endogenous variable is not needed, nor is the factor structure we impose. However, he imposes

a strong support condition on a variable like Z3 requiring that it exceeds the length of the unobservable U. As

explained in Khan and Tamer (2010), such an approach precludes even bounding � 0 if the support condition on Z3

is not satis�ed.
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This motivates us to use maximum rank correlation estimator proposed by Han (1987).

Implementation requires further details to pay attention to. The unknown choice probabilities,

their derivatives, and the density of V will be estimated using nonparametric methods, and for this

we adopt locally linear methods as they are particularly well suited for estimating derivatives of

functions.

With functions and their derivatives estimated in the �rst stage of our procedure, the second

stage plugs in these estimated values into an objective function to be optimized. Speci�cally, letting

�̂ denote (^�; 
̂ ), our estimator is of the form:

�̂ = arg max
�

Qn;2(� ) �
X

i 6=j

ĝi;j (� ) (3.1)

in which

ĝi;j (� ) = [ 1f @2P̂11(X 1;i ; X i )=f̂ V (X i ) + @2P̂10(X 1;j ; X j )=f̂ V (X j ) � 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) � 0g

+ 1f @2P̂11(X 1;i ; X i )=f̂ V (X i ) + @2P̂10(X 1;j ; X j )=f̂ V (X j ) < 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) < 0g];

with

�( x1; x; ~x1; ~x; � ) = x1 + � � 
x � (~x1 � 
 ~x):

We note that this estimator falls into the class of those which optimize a nonsmooth U-process

involving components estimated nonparametrically in a preliminary stage.7 Examples of other

estimators in this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010),

Jochmans (2013), Chen, Khan, and Tang (2016), and our approach to deriving the limiting dis-

tribution theory of our estimator will follow along the steps used in those papers. Our limiting

distribution theory for this estimator is based on the following regularity conditions:

RK1 � 0 lies in the interior of �, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

function which is twice continuously di�erentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P k;l;r (�) and f X 1;X (�:�) (the density function of the random vector (X 1; X )) are continuously

di�erentiable of order p2, where p2 > 5.
7An alternative estimation procedure could be based on the exact relationship in (2.6). Note the equality on the

left-hand side of (2.6) is a function of the data alone and not the unknown parameters. The right-hand side equality

can then be regarded as a moment condition to estimate the unknown parameters. We describe this estimator and

derive its asymptotic properties in the Online Supplement to the paper. While the two estimation approaches will

have similar asymptotic properties (root- n consistent, asymptotically normal), we prefer the rank estimator in (3.1)

which involves fewer tuning parameters. Furthermore rank type estimators in general are more robust to certain

types of misspeci�cation, as pointed out in Khan and Tamer (2018).
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RK4 (First stage kernel function conditions) K (�), used to estimate the choice probabilities and

their derivatives is an even function, integrating to 1 and is of orderp2 satisfying p2 > 5.

RK5 (Rate condition on �rst stage bandwidth sequence) The �rst stage bandwidth sequenceHn

used in the nonparametric estimator of the choice probability functions and their derivatives

satis�es
p

nH p2� 1
n ! 0 and n� 1=4H � 1

n ! 0.

Based on these conditions, we have the following theorem, whose proof is in Section B of the

Supplementary Appendix which characterizes the rate of convergence and asymptotic distribution

of the proposed estimator:

Theorem 3.1. Under Assumptions RK1-RK5 ,

p
n(�̂ � � 0) ) N (0; V � 1� V � 1) (3.2)



weighted semi linear regression model as in, e.g., Robinson (1988). Section C in the Supplementary

Appendix provides details of how to construct such an estimator and outlines its large sample

properties.

4.2 Model with Two Idiosyncratic Shocks and a Bounded Common Factor

We express this model as:

Y1 = 1f X 1 + � 0Y2 � U � 0g

Y2 = 1f X � V � 0g;
(4.2)

where U = 
 0W + � 1, V = W + � 2, and (W; � 1; � 2) are mutually independent. First we consider

the case
 0 = 1 and X 1 is binary, because even in this context, for the baseline case with one

idiosyncratic shock, we can identify � 0. But identi�cation of � 0 becomes more di�cult in this

model, as established in the following theorem

Theorem 4.1. Suppose (4.2) holds, 
 0 is known to be one, X 1 is binary, and W has a bounded

support [� b;� a] such that 0:5 > b � a and 1� (b� a) > � 0 > b � a, then � 0 is not point identi�ed.

This nonidenti�cation result motivates imposing additional structure on W , and we consider

the following model

B1 U = 
 0W + � 1 and V = � 0W + � 2.

B2 W is standard normally distributed.

B3 W , � 1 and � 2 are mutually independent.

B4 X has full support.

B5 Denote the density ofV as f V , then f V does not have a Gaussian component in the sense that

f V 2 G = f g is a density on < s.t. : g = g0� � � for some densityg0 implies that � = 0g;

where � � is the density for a normal distribution with zero mean and � 2 variance.

Assumption B5 e�ectively assumes that the distribution of � 2 has tail properties di�erent from

those of a normal distribution. This type of assumption is made in the deconvolution literature as

it is necessary for identi�cation of the target density when the error distribution is not completely

known- see, e.g., Butucea and Matias (2005).8 The importance of non-normality in factor models

goes back to Geary (1942) and Reiersol (1950), who have shown that factor loadings are identi�ed

in a linear measurement error model if the factor is not Gaussian.
8In fact, based on the results in Butucea and Matias (2005), W can belong to a more general class of known

distributions. Furthermore, we note that if � 0 is known, then Assumption B5 is not necessary.
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Theorem 4.2. If Assumptions B1 {B5 hold, then � 0, 
 0 and � 0 are identi�ed.

Note that this identi�cation result does not require any variation from X 1, which is in spirit

close to the one-factor model in our paper and is di�erent from the identi�cation result in Vytlacil

and Yildiz (2007). We also note that this result does not contradict the counterexample in the

paper. In the counterexample, we only assume that we know the support ofW is bounded. Here

we assume that the full density ofW , and thus, the support of W is known.

5 Finite Sample Properties

In this section we explore the �nite sample properties of the proposed estimation procedure via a

simulation study. We will also see how sensitive the performance of the proposed estimator is to the

factor structure assumption. As a base comparison, we also report results for the estimator proposed

in Vytlacil and Yildiz (2007) to see how sensitive it is to their second instrument restriction.

Our data are simulated from base models of the form

Y1 = 1f X 1 + � 0Y2 � U � 0g (5.1)

Y2 = 1f X � V > 0g (5.2)

where X 1 is binary with success probability 0.6, X has marginal distribution N (0; 1), X 1 and X

are mutually independent, (X 1; X ) ? (V;�), U = 
 0V + �. ( V;�) are distributed independently of

each other, whereV is distributed following a standard normal distribution, and � is distributed

either standard normal, Laplace, orT(3). The parameters (� 0; 
 0) = ( � 0:25; 1:2) or (0:5; 1:2).

SinceX 1 is discrete, Vytlacil and Yildiz (2007)'s identi�cation condition does not hold. However,

the identi�cation condition in this paper becomes

j� j � length of the support of X;

which holds.

For each choice of sample sizen = 100; 200; 400; 800; 1; 600, we simulate 280 samples and report

the bias, standard deviation (std), root mean squared error (RMSE), and median absolute deviation

(MAD) for both Vytlacil and Yildiz (2007)'s estimator (VY051 fn0.9091 -the



As results from the table indicate, the �nite sample performance of our estimator generally

agrees with the asymptotic theory. The RMSE for the estimator proposed here is decreasing as the

sample size increases, as one could expect given the consistency property of our estimator. Besides,

the decay rate of the RMSE and MAD is about
p

2 when n � 400 as sample sizes doubles, in line

with the parametric rate of convergence of our estimator.





6 Conclusions

In this paper we explored the identifying power of factor structures in discrete simultaneous sys-

tems. We found that for a binary-binary system the factor structure we considered did indeed add

informational content. Speci�cally, it enabled the relaxation of both the exclusion and support

conditions typically employed in the identi�cation of these models. As we then demonstrated fac-

tor structures then enabled the regular identi�cation of parameters of interest, and we proposed

a new rank based estimation procedure that converged at a parametric rate with a limiting nor-

mal distribution. Finite sample properties of the estimator were demonstrated through simulation

studies.



Supplement to \Informational Content of Factor Structures in

Simultaneous Binary Response Models"

Abstract

This paper gathers the supplementary material to the original paper. Section A proves



B Distribution Theory for the Rank Estimator

Recall we de�ned our two step rank estimator as follows: Letting �̂ denote (^�; 
̂ ), our estimator is

of the form:

�̂ = arg max
�

Q̂n;2(� ) �
X

i 6=j

ĝi;j (� )

in which

ĝi;j (� ) = [ 1f @2P̂11(X 1;i ; X i )=f̂ V (X i ) + @2P̂10(X 1;j ; X j )=f̂ V (X j ) � 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) � 0g

+ 1f @2P̂11(X 1;i ; X i )=f̂ V (X i ) + @2P̂10(X 1;j ; X j )=f̂ V (X j ) < 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) < 0g];

with

�( x1; x; ~x1; ~x; � ) = x1 + � � 
x � (~x1 � 
 ~x)

We note this estimator falls into the class of those which optimize a nonsmooth U-process.involving

components estimated nonparametrically in a preliminary stage. Example of other estimators in

this class can be found in Khan (2001), Abrevaya, Hausman, and Khan (2010), Jochmans (2013),

Chen, Khan, and Tang (2016), and our approach to deriving the limiting distribution theory of

our estimator will follow along the steps used in those papers. Our proof strategy will be based on

deriving a quadratic approximation for the objective function Qn;2(� ), in a way analogous to the

method introduced in Sherman (1994b). Following Sherman (1994b), we will derive the asymptotic

properties of �̂ in three stages. We will �rst establish its consistency, then derive an intermediate

rate (4th root consistency), followed by establishing root-n consistency and asymptotic normality

of the estimator. Our result are based on the following regularity conditions:

RK1 � 0 lies in the interior of �, a compact subset of R2.

RK2 The index X is continuously distributed with support on the real line, and has a density

function which is twice continuously di�erentiable.

RK3 (Order of smoothness of probability functions and regressor density functions) The functions

P k;l;r (�) and f X 1;X (�



RK5 (Rate condition on �rst stage bandwidth sequence) The �rst stage bandwidth sequenceHn

used in the nonparametric estimator of the choice probability functions and their derivatives

satis�es
p

nH p2 � 1
n ! 0 and n� 1=4H � 1

n ! 0.

We �rst show consistency of the rank estimator. To do so we �rst de�ne the objective function

Qif
n;2(� ), de�ned as

Qif
n;2(� ) �

X

i 6= j

gi;j (� )

where

gi;j (� ) = [ 1f @2P11(X 1;i ; X i )=f V (X i ) + @2P10(X 1;j ; X j )=f V (X j ) � 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) � 0g

+ 1f @2P11(X 1;i ; X i )=f V (X i ) + @2P10(X 1;j ; X j )=f V (X j ) < 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) < 0g];

Sincegi;j is bounded by 18i; j , and our random sampling assumption, we have for each� ,



by Markov's inequality. But the expectation in the numerator on the right hand side is

P(m̂(x i ) > 0; m(x i ) < 0) = P(m̂(x i ) > 0; m(x i ) � � � n ) + P(m̂(x i ) > 0; m(x i ) 2 (� � n ; 0))

where � n is a sequence of positive numbers converging to 0, at a slow rate, e.g.(logn� 1). The �rst

term on the right hand side is bounded above by

P(jm̂(x i ) � m(x i )j > � n ) � P(km̂(�) � m(�)k > � n )

where the notation km̂(�) � m(�)k above denotes the sup norm overx i . The right hand side

probability above will be su�ciently small for n large enough by the rate of convergence of the

nonparametric estimator. The second term,P(m̂(x i ) > 0; m(x i ) 2 (� � n ; 0)), is bounded above by

P(m(x i ) 2 (� � n ; 0)) which by the smoothness ofm(x i ) converges to 0, and hence can be made

arbitrarily small. �

To derive the rate of convergence and limiting distribution theory for the feasible estimator

where we �rst estimate choice probability functions and their derivatives nonparametrically, we

expand the nonparametric estimators around true functions that are inside the indicator function in

Qn2. Then we can follow the approach in Sherman (1994b). Having already established consistency

of the estimator, we will �rst establish root- n consistency and then asymptotic normality. For

root-n consistency we will apply Theorem 1 of Sherman (1994b) and so here we change notation

to deliberately stay as close as possible to his. We will actually apply this theorem twice, �rst

establishing a slower than root-n consistency result and then root-n consistency. Keeping our

notation deliberately as close as possible to Sherman(1994b), here replacing our second stage rank

objective function Q̂2;n (� ) with Ĝn (� ), our infeasible objective function Qif
n;2(� ) with Gn (� ), and

denoting our limiting objective function, previously denoted by � 0(� ), by G(� ). We have the

following theorem:

Theorem B.1. (From Theorem 1 in Sherman (1994b)).

If � n and "n are sequences of positive numbers converging to 0, and

1. �̂ � � 0 = op(� n )

2. There exists a neighborhood of � 0 and a constant � > 0 such that G(� ) � G (� 0) � � k� � � 0k2

for all � in this neighborhood.

3. Uniformly over Op(� n ) neighborhoods of � 0

Ĝn (� ) = G(� ) + Op(k� � � 0k=
p

n) + op(k� � � 0k2) + Op("n )

then �̂ � � 0 = Op(max("1=2; n� 1=2)) .

Once we use this theorem to establish the rate of convergence of our rank estimator, we can

attain limiting distribution theory, which will follow from the following theorem:
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Theorem B.2. (From Theorem 2 in Sherman (1994b)). Suppose�̂ is
p

n-consistent for � 0, an

interior point of � : Suppose also that uniformly overOp(n� 1=2) neighborhoods of� 0,

Ĝn (� ) =
1
2

(� � � 0)0V(� � � 0) +
1

p
n

(� � � 0)0Wn + op(1=n) (B.1)

whereV is a negative de�nite matrix, and Wn converges in distribution to aN (0; �) random vector.

Then

p
n(�̂ � � 0) ) N (0; V � 1� V � 1) (B.2)

We �rst turn attention to applying Theorem B.1 to derive the rate of convergence of our

estimator. Having already established consistency of our rank estimator, we turn attention to the

second condition in Theorem B.1. To show the second condition, we will �rst derive an expansion for

G(� ) around G(� 0). We denote that even thoughGn (� ) is not di�erentiable in � , G(� ) is su�ciently

smooth for Taylor expansions to apply as the expectation operator is a smoothing operator and

the smoothness conditions in AssumptionsRK2 , RK3 . Taking a second order expansion ofG(� )

around G(� 0), we obtain

G(� ) = G(� 0) + r � G(� 0)0(� � � 0) +
1
2

(� � � 0)0r �� G(� � )( � � � 0) (B.3)

where r � and r �� denote �rst and second derivative operators and� � denotes an intermediate

value. We note that the �rst two terms of the right hand side of the above equation are 0, the �rst

by how we de�ned the objective function, and the second by our identi�cation result in Theorem

2.1. De�ne

V � r �� G(� 0) (B.4)

and V is positive de�nite by Assumption A3 , so we have

(� � � 0)0r �� G(� 0)( � � � 0) > 0 (B.5)

r �� G(� ) is also continuous at� = � 0 by AssumptionsRK2 and RK3 , so there exists a neighborhood

of � 0 such that for all � in this neighborhood, we have

(� � � 0)0r �� G(� )( � � � 0) > 0 (B.6)

which su�ces for the second condition to hold.

To show the third condition in Theorem B.1, we next establish the form of the remainder term
when we replace nonparametric estimators with the true functions they are estimating. Speci�cally
we wish to evaluate the di�erence between

[1f @2 P̂ 11 (X 1;i ; X i )=f̂ V (X i ) + @2 P̂ 10 (X 1;j ; X j )=f̂ V (X j ) � 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) � 0g (B.7)

+ 1f @2 P̂ 11 (X 1;i ; X i )=f̂ V (X i ) + @2 P̂ 10 (X 1;j ; X j )=f̂ V (X j ) < 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) < 0g (B.8)

5



and

[1f @2P 11(X 1;i ; X i )=f V (X i ) + @2P 10(X 1;j ; X j )=f V (X j ) � 0g1f �(X 1;i ; X i ; X 1;j ; X j ; � ) � 0g (B.9)

+ 1f @2P 11(X 1;i ; X i )=f V (X i ) + @2P 10(X 1;j ; X j )=f V (X j ) < 0g1f �(X 1;i ; X i ; X 1;j ; X j ; � ) < 0g (B.10)

To establish a representation for this di�erence, we �rst simplify notation we write the expressions

as:

I [m̂1(x i ) + m̂2(x j ) � 0]I [� x0
ij � � 0] (B.11)

+ I [m̂1(x i ) + m̂2(x j ) < 0]I [� x0
ij � < 0] (B.12)

and

I [m1(x i ) + m2(x j ) � 0]I [� x0
ij � � 0] (B.13)

+ I [m1(x i ) + m2(x j ) < 0]I [� x0
ij � < 0] (B.14)

respectively, where herex i denotes the separate components ofx1i ; x i , and analogous forx j . We

�rst explore

(I [m̂1(x i ) + m̂2(x j ) � 0] � I [m1(x i ) + m2(x j ) � 0])I [� x0
ij � � 0]

for each i; j inside the double summation:

1
n(n Tf 8.455 0 Td [(�)n7.272 0 2tp9091 Tf 41.242 0 Td [(i;)-167(j)]TJ/F15 10.9091 Tf 17.9091 Tf 7.273 05 Td [(I)]TJ/F15 8.45t42



RK3, RK4, RK5, is op(n� 1=4). Thus by repeated application of Theorem B.1, we can conclude that

the estimator is root-n consistent. To show that the estimator is also asymptotically normal, we

will �rst derive a linear representation for the term:

1
n(n � 1)

X

i 6=j

� (0)f m ij (0)(m̂1(x i ) � m1(x i )) I [� x0
ij � � 0] (B.17)

As this term is linear in the nonparametric estimator m̂1(x i ), the desired linear representation

follows from arguments used in Khan (2001). One slight di�erence here compared to Khan (2001)

is that here our nonparametric estimators and estimands are each ratios of derivatives. Nonetheless,

after linearizing these ratios as done in, e.g. Newey and McFadden (1994). Speci�cally, we have

that B.17 can be expressed as:

1
n(n � 1)

X

i 6=j

� (0)f m ij (0)
1

m1den(x i )
(m̂1num (x i ) � m1num (x i )) I [� x0

ij � � 0] (B.18)

�
1

n(n � 1)

X

i 6=j

� (0)f m ij (0)
m1num (x i )
m1den(x i )2 (m̂1den(x i ) � m1den(x i )) I [� x0

ij � � 0] (B.19)

where m̂1num (x i ) denotes the numerator f @2P̂11(X 1;i ; X i )g, the estimator of m1num (x i ) which de-

notesf @2P11(X 1;i ; X i )g, and m̂1den(x i ) denotes the denominatorf̂ V (X i ), the estimator of m1den(x i )

which denotesf V (X i ).

Plugging in the de�nitions of the kernel estimators of m̂1num (x i ), and m̂1den(x i ), results in a

third order process. Using arguments in Khan (2001) and Powell, Stock, and Stoker (1989) we can

express the third order U process as a second orderU process plus an asymptotically negligible

remainder term. This is of the form:

1
n

nX

i=1

� (0)
`(x i )

m1den(x i )
(y1i � m1num (x i ))E

�
I [f m ij (0)� x0

ij � � 0]jx i
�

(B.20)

where `(x i ) � � f 0
X (x i )

f X (x i )
. We note that the function E

h
f m ij (0)I [� x0

ij � � 0]jx i

i
, which we denote

here by H(x i ; � ) is a smooth function in � . We will use this feature to expand H(x i ; � ) around

H(x i ; � 0). Analogous arguments can be used to attain a linear representation of (B.19), which is of

the form:

1
n

nX

i=1

� (0)
`2(x1i )m1num (x i )

m1den(x i )2 (y2i � m1den(x i ))E
�
I [f m ij (0)� x0

ij � � 0]jx i
�

(B.21)

where `2(x1i ) � that the

0
X

xi

fX(x i



(B.22)

Note that by Assumptions RK2 , RK3 , H(x i ; � ) is smooth in � implying the expansion

H(x i ; � ) = H(x i ; � 0) + r � H(x i ; � 0)0(� � � 0)

Thus we can express (B.22) as the which we note is a mean 0 sum

1
n

nX

i=1

 1rnki (� � � 0) (B.23)

where

 1rnki = � (0)
1

m1den (x i )

�
`(x i )(y1i � m1num (x i )) �

m1num (x i )
m



C Nonparametric Factor Structure

Here we describe an estimator for the case where we have a nonparametric factor structure. Recall

for this model we had the following relationship between unobservable variables:

U = g0(V ) + �� (C.31)

where we assumed that�� ? V .

Our goal in this more general setup is to identify and estimate both� 0 and g0. Our identi�cation

is based on the condition that

x1 + � 0 � g0(x ) = ~x1 � g0(~x):

if and only if

@2P11(x(1)
1 ; x(1))=f V (x(1)) + @2P10(~x(1)

1 ; ~x(1))=f V (~x(1)) = 0 :

Using the samei; j pair notation as before, this gives gives us, in the nonparametric case,

X 1i � X 1j = � 0 + ( g0(X i ) � g0(X j )) (C.32)

Note the above equation has a \semi parametric form", loosely related to the model considered

in, for example, Robinson (1988). However, we point out crucial di�erences between what we

have above and the standard semi linear model. Here we are trying to identify the intercept� 0

which is usually not identi�ed in the semi linear model as it cannot be separately identi�ed from

the nonparametric function. However, note above on the right hand side, we do not just have

a nonparametric function of X i ; X j , but the di�erence of two identical and additively separable

functions g0(�). In fact it is this di�erencing of these functions which enables us to separately

identify � 0. Furthermore, as will now see when turning to our estimator of � 0, the structure of

the nonparametric component, speci�cally additive separability of two identical functions of X i ; X j

respectively, can easily be incorporated into our approximation of each of them. From a theoretical

perspective separable functions have the advantage of e�ectively being a one dimensional problem,

as there are no interaction terms to have to deal with. It is well known that nonparametric



whereyi denotes the observed dependent variable,x i ; zi are observed regressors,g(�) is an unknown

nuisance function," i is an unobserved disturbance term, and� 0 is the unknown regression coe�cient

vector which is the parameter of interest. There is a very extensive literature in both econometrics

and statistics on estimation and inference methods for this model- see for example Powell (1994)

for some references.

One popular way to estimate this model is to use an expansion of basis functions, for example

polynomials or splines to approximateg(�), and from a random sample ofn observations of (yi ; x i ; zi )

regressyi on x i ; b(zi ) where b(zi ) denotes the set of basis functions used to approximateg(�). As

an illustrative example, assumingzi were scalar, if one were to use polynomials as basis functions,

one would estimate the approximate model,

yi = x0
i � 0 + 
 1zi + + 
 2z2

i + 
 3z3
i + ::::
 kn zkn

i + uin

where kn is a positive integer smaller than the sample sizen, and 
 1; 
 2; :::
 kn are additional

unknown parameters. This has been done by regressingyi on x i ; zi ; z2
i ; :::zkn

i , and our estimated

coe�cient of x i would be the estimator of � 0. The validity of this approach has been shown in, for

example, Donald and Newey (1994). Now for our problem at hand, incorporating a nonparametric

factor structure, we propose a kernel weighted least squares estimator. The weights are as they

were before, assigning great weights to pairs of observations where the sum of derivatives of ratios

of choice probabilities are closer to 0.

The dependent variable is identical to as before, the set ofn choose 2 pairsX 1i � X 1j . The regressors

now re
ect the series approximation of g0(X i ) � g0(X j ):

g0(X i ) � g0(X j ) � 
 1(X i � X j ) + 
 2(X 2
i � X 2

j ) + 
 3(X 3
i � X 3

j ) + :::
 kn (X kn
i � X kng



is bounded away from 0 uniformly in kn , where

Pkn � (1; (X i � X j ); (X i � X j )2; :::(X i � X j )kn )0

Theorem C.1. Under Assumptions I ,K , H , S, PS, FK , FH , BFC ,

�̂ NP
p

! � 0 (C.33)

D Proof of Theorem 4.1



E Proof of Theorem 4.2

We �rst show that both � 0 and the density of � 2 are identi�ed. Note X has full support. This

implies the density of V denoted asf V (�) is identi�ed via

f V (v) = @vE(Y2jX = v):

In addition, we have

f V (�) = f W � � � 0(�);

where � denotes the convolution operator. Supposef W (�) and � 0 are not identi�ed so that there

exist f 0
W (�) and � 0 such that

f V (�) = f 0
W



and

F (� @xP10(x1; �)) = F � 0(F� 1(x1 � 
 0�)f W (�))F (



Theorem F.1. Assumption 1 holds. (1) Then j� 0j � b� a is necessary and su�cient for � 0 to be

identi�ed. (2) When j� 0j > b � a, the sharp identi�ed set for � 0 is

A � = f � : � > b � a if � 0 > 0 and � < a � b if � 0 < 0g:

Next, we assume, in addition to Assumption 1, the factor structure, i.e., (2.3) in Section 2. Recall

in Section 3, under the factor structure, our rank estimator can be written as an M-estimator

�̂ = arg max
�

Qn;2(� ) �
X

i 6=j

ĝi;j (� )

in which

ĝi;j (� ) = [ 1f @2P̂11(X 1;i ; X i )=f̂ V (X i ) + @2P̂10(X 1;j ; X j )=f̂ V (X j ) � 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) � 0g

+ 1f @2P̂11(X 1;i ; X i )=f̂ V (X i ) + @2P̂10(X 1;j ; X j )=f̂ V (X j ) < 0g1f �( X 1;i ; X i ; X 1;j ; X j ; � ) < 0g];

with

�( x1; x; ~x1; ~x; � ) = x1 + � � 
x � (~x1 � 
 ~x):

The information content explored by the M-estimator can be summarized as follows:

A 2(� ) = f (X 1; ~X 1; X; ~X );�( X 1; X; ~X 1; ~X ; � 0) � 0 > �( X 1; X; ~X 1; ~X ; � )

or �( X 1; X; ~X 1; ~X ; � 0) < 0 � �( X 1; X; ~X 1; ~X ; � )g:

Then we cannot distinguish, from the true parameter � 0, all impostors in

A 2 = f � : P(A 2(� )) = 0 g:

In a simple example, if Supp(X 1; X ) = [ a; b] � [c; d], then � 0 is identi�ed if j� 0j < b � a+ j
 0j(d � c).

Recall Theorem F.1, without imposing factor structure, the necessary and su�cient condition for

achieving identi�cation is j� 0j � b� a. Therefore, the blue area in the Figure below is the additional

parts of parameter space that is identi�ed with factor structure but not otherwise.
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When � 0 < a � b, for any � < � 0, we can de�ne

~U = U + � � � 0 if U � b+ � 0

~U = U if U > b + � 0

Then for any x1 2 [a; b],

P( ~U � x1 + � jV = v) = P( ~U � x1 + �; U � b+ � 0) + P( ~U � x1 + �; U > b + � 0jV = v)

= P(U � x1 + � 0jV = v)

P( ~U � x1jV = v) = P( ~U � x1; U � b+ � 0jV = v) + P( ~U � x1; U > b + � 0jV = v)

= P(U � b+ � 0; U � x1 + � 0 � � jV = v) + P(b+ � 0 < U � x1; jV = v)

= P(U � b+ � 0jV = v) + P(b+ � 0 < U � x1; jV = v)

= P(U � x1jV = v):

Let GU;V and G ~U;V be the joint distribution of ( U; V) and ( ~U; V) respectively. Then the above

calculation with (G.38) imply that ( � 0; GU;V ) and (�; G ~U;V ) are observationally equivalent.

When � 0 > b � a, for any � > � 0, we can de�ne

~U = U + � � � 0 if U > a + � 0

~U = U if U � a + � 0

Then for any x1 2 [a; b],

P( ~U � x1 + � jV = v) = P( ~U � x1 + �; U � a + � 0) + P( ~U � x1 + �; U > a + � 0jV = v)

= P(U � a + � 0jV = v) + P(a + � 0 < U � x1 + � 0jV = v)

= P(U � x1 + � 0jV = v):

P( ~U � x1jV = v) = P( ~U � x1; U � a + � 0jV = v) + P( ~U � x1; U > a + � 0jV = v)

= P(U � x1jV = v):

So again, (� 0; GU;V ) and (�; G ~U;V ) are observationally equivalent.

For the second result in the theorem , �rst note that, when j� 0j > b � a, the sign of � 0 is

identi�ed by the data. We take � 0 > b � a as an example. By the proof of Theorem F.1, we have

already shown that all � > � 0 is in the identi�ed set. Now we consider b� a+� 0
2 � � < � 0.

~U = U + � � � 0 if U > a + �

~U = U if U � a + �
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Then for any x1 2 [a; b],

P( ~U � x1 + � jV = v) = P( ~U � x1 + �; U � a + � ) + P( ~U � x1 + �; U > a + � jV = v)

= P(U � a + � jV = v) + P(a + � < U � x1 + � 0jV = v)

= P(U � x1 + � 0jV = v):

P( ~U � x1jV = v) = P( ~U � x1; U � a + � jV = v) + P( ~U � x1; U > a + � jV = v)

= P(U � x1jV = v) + P(U � x1 + � 0 � �; U > a + � jV = v):

= P(U � x1jV = v):

Here note that the last equality is becausex1 + � 0 � � � b+ � 0 � � � a+ � if � � b� a+� 0
2 . Denote

� (1) = b� a+� 0
2 . Then we have shown that there existsU(1)(� ) which only depends on� such that

for any x1 2 [a; b], any v and any � 0 > � � � (1)

P(U(1)(� ) � x1 + � jV = v) = P(U � x1 + � 0jV = v)

P(U(1)(� ) � x1jV = v) = P(U � x1jV = v):

In particular, there exists U(1)(� (1)) such that

P(U(1)(� (1)) � x1 + � (1)jV = v) = P(U � x1 + � 0jV = v)

P(U(1)(� (1)) � x1jV = v) = P(U � x1jV = v):

Now repeating the above construction but replacingU with U(1) and � 0 with � (1), we have for

any � (1) > � � � (2) � b� a+� (1)

2 , there exists U(2)(�



Online Supplement to \Informational Content of Factor Structures in

Simultaneous Binary Response Models": Distribution Theory for Closed

Form Estimator

H Distribution Theory for Closed Form Estimator

Many of the basic arguments follow those used in Chen and Khan (2008) and Chen, Khan, and

Tang (2016). Recall what the key identi�cation condition that motivated the weighted least squares

estimator: For pairs of observations (x1; x ) and (~x1; ~x) in Supp(X 1; X ),

x1 + � 0 � 
 0x = ~x1 � 
 0~x:

if and only if

@2P11(x1; x )=f V (x ) + @2P10(~x1; ~x)=f V (~x) = 0 :

where recall@2 denotes the partial derivative with respect to the second argument. Note that even

though the random variable V is unobserved, the density functionf V (�) above can be recovered

from the data from the partial derivative of the choice probability in the treatment equation with

respect to the regressor in the treatment equation. Thus the above equation involves the sum of

two ratios of derivatives of choice probabilities.

Recall � 0 � (� 0; 
 0). Our estimator of � 0



K (�) and bandwidth Hn , whose properties are discussed below. The second problem can be dealt

with through the use of \kernel weights" as has been frequently employed in the semiparametric

literature.



4. � � xxi = E
h
� i ~X i ~X 0

i jP
k;l;r
0i

i

� 1(p1r
i ; p0r

j ) � E [x ij x0
ij jp1r

i ; p0r
j ] wherex i denotes the 2� 1 vector (1; x i ), � 0(p0r

j ) � E [x j jp0r
j ], where

x j denotes the 2� 1 vector (1; x j ), f 1(�) denotes the density function of the random variableP1;1;r ,

f 0(�) denotes the density function of the random variableP1;0;r .

Our derivation of the asymptotic properties of this estimator are based on the following assump-

tions1:

Assumption I (Identi�cation) The 2 � 2 matrix:

M 1 = E
�
� 1(p1r

i ; � p1r
i )0f 0(� p1r

i )
�

has full rank.

Assumption K (Second stage kernel function) The kernel functionk(�) used in the second stage

(to match the sum of ratios of derivatives to 0) is assumed to have the following properties:

K.1 k(�) is twice continuously di�erentiable, has compact support and integrates to 1.

K.2 k(�) is symmetric about 0.

K.3 k(�) is an eighth order kernel:
Z

ul k(u



The �nal set of assumptions involve restrictions for the �rst stage kernel estimator of the ratio

of derivatives. This involves smoothness conditions on the choice probabilitiesP k;l;r
0i , smoothness

and moment conditions on the kernel function, and rate conditions on the �rst stage bandwidth

sequence.

Assumption PS (Order of smoothness of probability functions and regressor density functions)

The functions P k;l;r (�) and f X 1 ;X (



We will �rst derive a plim for the denominator term and the a linear representation for the numera-

tor. For the denominator term here we aim to establish that the double sum 1
n(n� 1)

P
i 6=j ŵ



Denoting a kernel estimator of the probability function of the outcome variable as a function of

~x = ( x1; x), by p̂(~x) =
P

j y1j K H (~xj � ~x)
P

j K H (~xj � ~x) where K (�) is our kernel function, H our bandwidth, and

K H (�) � 1
H K ( �

H ), our estimator of the derivative of the probability function is

p̂1(~x) =

P
k y1kK 0

H (~xk � ~x) 1
H

P
k K H (~xk � ~x) �

P
k K 0

H (~xk � ~x) 1
H

P
k y1kK H (~xk � ~x)

(
P

k K H (~xk � ~x))2

We plug in the �rst of the two terms in the above numerator into H.9 yielding

1
n(n� 1)(n� 2)

P
i 6=j 6=k w0

ij f � 1
vi (y1kK 0

H (~xk � ~xi ) 1
H � p1

i )x ij (� x1ij � x0
ij � 0)

1
n

P
k K H (~xk � ~xi )

In the above expression, we replace the denominator term with its plim2 , which is f ~X (x i ), which

gives the expression:

1
n(n � 1)(n � 2)

X

i 6=j 6=k

 
y1kK 0

H (~xk � ~xi ) 1
H

f ~X (~xi )



As an additional step we want a representation for � ij . By its de�nition,

1
n(n � 1)

X

i 6=j

� ij =
1

n(n � 1)

X

i 6=j

w0
ij x ij (� x1ij � x0

ij � 0) =
1

n(n � 1)

X

i 6=j

1
h2 k0

 
p1r

i + p0r
j

h

!

� (~xi ; ~xj )

(H.12)

where � (~xi ; ~xj ) � x ij (� x1ij � x0
ij � 0). To attain this representation, we evaluate the expectation of

the term inside the double summation. We express this as

1
h2

Z
k0

 
p1r

i + p0r
j

h

!

�� (p1r
i ; p0r

j )f 1(p1r
i )f 0(p0r

j )dp1r
i dp0r

j

where recallf 1(�) denotes the density function of the random variableP1;1;r , f 0(�) denotes the den-

sity function of the random variable P1;0;r , and here, �� (p1r
i ; p0r

j ) � E [� (~xi ; ~xj )jp1r
i ; p0r

j ] To evaluate

the above integral we construct the change of variablesu =
p1r

i +pr 0
j

h and expand inside the integral.

Before expanding the integral is of the form

1
h

Z
k0(u) �� (p1r

i ; uh � p1r
i )f 1(p1r

i )f 0(uh � p1r
i )dudp1r

i

After expanding, the lead term is 0 because the functionk(�) vanishes on the boundary of its

support. The next term is of the form:
Z � �� 2(p1r

i ; � p1r
i )f 1(p1r

i )f 0(� p1r
i ) + � (p1r

i ; � p1r
i )f 1(p1r

i )f 0
0(� p1r

i )
�

k0(u)ududp1r
i

From our identi�cation result the above integral simpli�es to � E [�� 2(p1r
i ; � p1r

i )f 0(� p1r
i )] which we

will denote by � 1. So plugging this result into H.8 we have the following result:

1
n(n � 1)

X



The term f̂ vi is our kernel estimator of the derivative of the probability function in the treatment

equation: f̂ vi = @
@Xi

E[Y2i jX i ]. So we can use analogous arguments to attain a linear representation

for this U-statistic in H.16 to conclude

1
n(n � 1)

X

i 6=j

� ij
p1

i

f 2
vi

(f̂ vi � f vi ) =
1
n

nX

i=1

� 1f � 2
vi p1

i

�
y2i

f 0
X (x i )

f X (x i )
� f V (x i )

�
+ op(n� 1=2) (H.17)

�
1
n

nX

i=1

 2i + op(n� 1=2) (H.18)

where

 2i = � 1f � 2
vi p1

i

�
y2i

f 0
X (x i )

f X (x i )
� f V (x i )

�
(H.19)

Next we can turn attention to the the second term in H.7,

1
n(n � 1)

X

i 6=j

w0
ij (p̂0r

j � p0r
j )x ij (� x1ij � x0

ij � 0) (H.20)

The term p̂0r
j � p0r involves the ratio of two derivatives. So we can proceed as before by linearizing

this ratio. This will yield the two expressions:

1
n

nX

i=1

� 1f � 1
vi

(

y1i
f 0

~X
(~xi )

f ~X (~xi )
� p0(~xi )

)

+ op(n� 1=2) �
1
n

nX

i=1

 3i + op(n� 1=2) (H.21)

where

 3i = � 1f � 1
vi

(

y1i
f 0

~X
(~xi )

f ~X (~xi )
� p0(~xi )

)

(H.22)

and

1
n

nX

i=1

� 1f � 2
vi p0

i

�
y2i

f 0
X (x i )

f X (x i )
� f V (x i )

�
+ op(n� 1=2) �

1
n

nX

i=1

 4i + op(n� 1=2) (H.23)

where

 4i = � 1f � 2
vi p0

i

�
y2i

f 0
X (x i )

f X (x i )
� f V (x i )

�
(H.24)

So collecting all results we can conclude that the estimator has the linear representation:

�̂ � � 0 = M � 1
1

1
n

nX

i=1

 i + op(n� 1=2) (H.25)

where  i �  1i +  2i +  3i +  4i .
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