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Abstract

We consider a team contest in which players make e�orts to compete with other teams

for a prize, and players of the winning team divide the prize according to a prize-sharing

rule. This prize-sharing rule matters in generating members’ e�orts and attracting players

from outside. Assuming that players di�er in their abilities to contribute to a team and

their abilities are observable, we analyze which team structure realizes by allowing players

to move across teams. This inter-team mobility is achieved via head-hunting: a team

leader can o�er one of the positions to an outside player. We say that it is a successful

head-hunting if the player is better o� by taking the position, and the team’s winning

probability is improved. A team structure is stable if there is no successful head-hunting

opportunity. We show that if all teams employ the egalitarian sharing rule, then the

complete sorting of players according to their abilities occurs, and inter-team inequality

becomes the largest. In contrast, if all teams employ a substantially unequal sharing rule,

there is a stable team structure with a small inter-team inequality and a large intra-team

inequality. This result illustrates a trade-o� between intra-team inequality and inter-team

inequality in forming teams.
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1 Introduction

In team contests players have to exert joint e�ort in order to compete with other teams for

a prize. Each player’s performance is typically a�ected by internal team characteristics such

as the team composition (the ability or productivity of one’s teammates), the agreed-upon

prize sharing rule, the complementarity between individual e�orts, as well as the presence of

free-riding incentives. The resulting teammates’ e�orts are then aggregated to team e�ort

which, when measured against that of other teams, determines the team’s winning probability

according to a Tullock contest success function. Thus, the relative strength and composition

of opposing teams can a�ect not only the equilibrium e�ort choice of each player but the

equilibrium team composition in the �rst place.

In this paper we focus on a speci�c type of player mobility across teams, namely mobility

achieved through head-hunting. We assume that in an attempt to improve their equilibrium

winning probability, teams can extend an o�er to any player. This o�er must specify the new

recruit’s relative position on the team, characterized by a predetermined value for their share

of the prize. When players consider the decision of potentially accepting such an o�er, they

have to weigh multiple costs and bene�ts: (1) what is the share of the prize they would receive

on the other team? (2) how much e�ort would they have to exert there? (3) what is the new

team’s winning probability, and how important would their new position be in a�ecting the

team’s performance? (4) how does their (publicly known) ability compare to that of their new

teammates, and could a potential transfer lead to increased free-riding incentives? (5) what

happens to the seat they vacated on their current team (if they had one), and how will this

a�ect the competition as a whole? When a player �nds an o�er acceptable, and if their new

team’s equilibrium winning probability is increased as a result of them joining, then we say that

a successful head-hunting occurs. A team structure (a matching between teams and players)

that allows no successful head-hunting will be de�ned as head-hunting-proof (or stable).

The goal of this work is to study the types of stable team structures that might result from

common reward allocation rules. We assume that all teams have the same �xed capacity and

that they all use the same common prize allocation rule. This sharing rule might be imposed

as a part of the rules of the contest (such as the Kaggle example below), or it might just be

the result of a long-established social norm in each industry. We distinguish between di�erent

allocation rules according to how equally they treat team members. At one end of the spectrum

we consider the egalitarian rule which divides the prize equally among the players. At the other

end are rules that treat players unequally, giving higher-ranked members substantially higher

shares. Before proceeding with an overview of our �ndings, we present several examples that

help illustrate the use of such allocation rules and the resulting team structures.

The �rst example comes from the website Kaggle, a platform hosting a variety of data science

and machine learning competitions. Each competition is self-contained, with a predetermined

prize, and there is a global cap of eight players per team (although each competition often has
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a lower team size limit). Anyone is allowed to participate and submit a solution, and joining

a team is left entirely in the hands of the contestants. Committing to a team occurs at the

time of registration for each contest and results in a binding agreement. When a team wins a

competition, the prize is equally divided between team members regardless of their contribution

(the egalitarian rule is enforced by Kaggle). It should be noted that all solutions are evaluated

and ranked, not only the winning one. Each player is then granted a score representing how

well their team did in the contest. The score is publicly known and can help players �nd teams

in future contests. It has been observed that over time many of the teams have ended up sorted

by ability - some of the highest-ranked contestants have joined teams together, winning or

scoring high in multiple competitions. The same seems to be true at the middle- and lower-end

of scores as well. The continued evolution of team formation at Kaggle is very reminiscent of

head-hunting and has led to an outcome in which the resulting inter-team inequality stands in

contrast to the implicitly enforced intra-team equality.



team output is the result of aggregated individual e�ort inputs, which we model via a CES

aggregator function, allowing for di�erent levels of e�ort complementarity. Players’ e�orts are

not observable or not contractable|thus players’ e�orts contribute to the winning probability

of their team but do not a�ect their shares of the winning prize. The shares that players receive

are allowed to be heterogeneous based on the positions they are assigned to, and we explicitly

focus on the rate at which lower positions are discounted relative to higher positions within each

team. It should be noted that by combining the approaches by Konishi and Pan (2020, 2021)

and Simeonov (2020), we can explicitly solve for player’s equilibrium payo�s, which makes it

possible to discuss head-hunting as a well-de�ned process of attracting better candidates.

The main result of this work is to show that the tradeo�s between intra- and inter-team

inequalities are not coincidental. We show that when the egalitarian rule is used within each

team, then complete ability sorting across teams is the only stable team structure. Alternatively,

we consider hierarchical prize allocation rules in which a common discount factor for rewards

is used. For high discount factors, we show that the cyclical allocation of players across teams

is stable. For intermediate discount factors, both the cyclical and complete sorting by ability

can coexist, and more generally, a combination of cyclical assignment and ability sorting can

occur in a stable team structure.

Much of the rationale behind these results originates from our key Lemma 3 in Section 4

below. It would be instructive to diverge with a brief discussion of Lemma 3 before proceeding

with the model. Consider in particular a scenario with two teams: a strong team A with high

average team ability and a high equilibrium chance of winning and a weaker team B with lower



teams? Clearly, there must be a signi�cant di�erence in compensation between group members

to open the possibility for such an occurrence. Only then would a high-ability player �nd it

viable to join a higher position on a weaker team instead of keeping a lower position on a more

successful team. High inequality within teams seems to become a necessary prerequisite for

achieving a more even distribution of talent across teams.

The rest of the paper is organized as follows. The following section presents a brief review

of related literature. Section 2 describes the model and assumptions. Section 3 presents the

equilibrium player and team e�orts in general team contests. In Section 4, we proceed with the

discussion of stability and the main results regarding the tradeo�s between intra- and inter-team

inequalities, and Section 5 concludes.

1.1 Relations to the Literature

Broadly, this paper belongs to the theory of coalition formation with externalities. Players’

payo�s depend not only on which coalition they belong to but also on other coalitions. Hart

and Kurz (1983), Bloch (1996), Yi (1997), Ray and Vohra (1999), and Ray (2008) provide a

general analysis of coalition formation games with externalities across coalitions. As speci�c

economic applications, Bloch (1995), Yi (1996), and Ray and Vohra (2001) consider cartel

structures, customs unions, and public good provision groups, respectively. Our paper belongs

to this literature, but there are some di�erences: in our game, there is a membership quota

for each team, and prize-sharing rules within a team are predetermined, but shares can be

heterogeneous. Thus, each position of a team can be heterogeneous for players, and players

care about which position of a team they will be assigned to. This is a new feature of our model

in the coalition formation literature.

More speci�cally, this paper belongs to the literature on group contests and prize-sharing

rules. Assuming individual e�orts are contractable, Nitzan (1991) analyzes how the combination

of an egalitarian and a relative-e�ort-sharing rules a�ects members’ incentives for players in

large and small groups. Lee (1995) and Ueda (2002) endogeneize group sharing rules in this

class. Esteban and Ray (2001) and Nitzan and Ueda (2011) show that Olson’s (1973) group

size paradox disappears if the prize among the members can be allocated into public and

private bene�ts and if private bene�ts can be allocated by an endogenously chosen relative-

e�ort-sharing rule, respectively. Based on the line of group contest research above, Baik and

Lee (1997, 2001) endogenize the alliance formation in Nitzan’s (1991) game with endogenous

group sharing rules and analyze two- and multiple-alliance cases, respectively. They use open-

membership games to describe alliance formation. Bloch et al. (2006) generalize the model

substantially to analyze the stability of the grand alliance in di�erent alliance formation games.

Sanchez-Pages (2007a,b) explores di�erent types of stability concepts in alliance formation

in contests where e�orts are perfect substitutes. These papers assume alliance members can

write a binding contract of sharing rules in the case of the alliance’s winning. In contrast,
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following Esteban and Sakovics (2003), Konishi and Pan (2020, 2021) analyze equilibrium

alliance structures in homogenous player alliance formation games without side payments when

members’ e�orts are complementary with each other by using a CES aggregator function.2 The

current paper extends Konishi and Pan (2020,2021), allowing for heterogeneous abilities and

unequal sharing rules using the approach by Simeonov (2020) and Kobayashi, Konishi, and

Ueda (2023).3 Unlike in Nitzan (1991) and Nitzan and Ueda (2011), individual e�orts are

unobservable or noncontractable, allowing for free-riders as in Esteban and Ray (2001). For

more complete surveys of the literature on group contests, see Konrad (2009) and Fu and Wu

(2019).

Our stability notion, head-hunting-proofness, is close to pairwise stability in matching lit-

erature due to the presence of team membership quotas. Gale and Shapley (1962) introduce

the celebrated two-sided matching problem and its solution concept, pairwise stable matching.

In their domain, the pairwise stability is equivalent to the core despite its simplicity. Imamura,

Konishi, and Pan (2021) introduce externalities across matched pairs to the two-sided matching

problems and show that their pairwise stable matching via swapping preserves nice properties.



2 The Model

There are potentially j = 1; 2; :::; J teams, and there are M positions in a team. Let (m; j)

stand for the mth position in j team. Player i = 1; :::; N is characterized by her ability ai.

We assume that a1 ≥ a2 ≥ ::: ≥ aN . With some abuse of notations, we also let M , J , and

N stand for the set of positions, teams, and players, respectively. A membership pro�le is

’ = (’mj)m∈M,j∈J where ’mj ∈ N ∪ {∅} for all m ∈ M and j ∈ J . We assume a player

can only belong to a team. Therefore, a membership pro�le is feasible if ’mj ̸= ’m′j′ for all

(m; j) ̸= (m′; j′). Let Nj = {i ∈ N |’mj = i for some m ∈ M} ⊂ N be the set of players in

team j under ’.

We will consider our team stability problem in a team contest framework in two stages. In

stage 1, a team structure ’ is determined, and in stage 2, an actual team contest occurs given

’. Membership pro�le ’ is formed in stage 1, by players’ foreseeing the resulting outcomes in

stage 2. So, we will �rst describe the team contest problem in stage 2, and our stability notion

in stage 1 will be introduced in Section 4.8

Given a feasible membership pro�le ’, players compete with each other as a team for

a prize, which value is V . In this contest, team members i ∈ Nj choose their e�ort levels ei

simultaneously and non-cooperatively. The members’ e�orts in team j are aggregated by a CES

function Xj = (
P

m∈M aσ
φmj

eσ
φmj

)
1
σ , where 0 < � < 1.9 This CES aggregator function becomes

a linear function (perfect substitutes) when � = 1, and becomes a Cobb-Douglas function when

� = 0 in the limit. Teams’ aggregate e�ort vector (X1; :::; XJ) determines each team’s winning

probability. The winning probabilities of teams are determined by a Tullock-style contest: team

j’s \winning probability" is given by

Pj =
XjPJ

k=1 Xk

: (1)

After the winning team gets the prize, it will distribute the prize to its team members by a

common �xed sharing rule that is considered as a social norm. This common sharing rule is

� = (�1; :::; �m; :::; �M) with �m ∈ [0; 1] and
P

m∈M �m = 1, in which �m stands for the prize

share that the player in position m of a team. Without loss of generality, we rank positions in





is obtained. Thus, we have
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and

Pj = 1 −
(J − 1) 1

Aj(φj)PJ
k=1

1
Ak(φk)

;

where Aj(’j) =
�PM

m=1 a
σ

1−σ
φmj �

σ
1−σ
m

� 1−σ
σ



much lower abilities than other teams. So, to complete the equilibrium analysis, we will apply

a method called the \share function" approach that is systematically analyzed in Cornes and

Hartley (2005), by rewriting the second-stage competition as a Tullock contest with J individual

players with heterogeneous marginal costs.11 Cornes and Hartley (2005) considered a J player

(individual) Tullock contest with heterogenous constant marginal costs w1 ≤ w2 ≤ :::: ≤ wJ ,

in which player j = 1; :::; J exerts e�ort Xj with wj > 0. Her winning probability is speci�ed

by Pj =
XjPJ

k=1 Xk
, and her payo� is

uj =
XjPJ

k=1 Xk

V − wjXj:

The payo� function is strictly concave in Xj, and the �rst-order condition is�P
k ̸=j Xk

�
�PJ

k=1 Xk

�2 V − wj =
X−j

X2
V − wj = 0; (6)

for j = 1; :::; J . Then, Xj > 0 is a unique best response to X−j if and only if

X2
j + 2X−jXj + X2

−j − X−j

wj

V = 0:

Noting that some players may have too high a marginal cost for an interior solution, player j’s

best response to X−j is

�j(X−j) = max

(
−X−j +

s
X−jV



Figure 1: An example with J = 4 and w1 < w2 < w3 < w4. Teams 1, 2, and 3 are active. Team
4 is inactive.

j = 1; :::; J and s(X). The equilibrium for the arti�cial contest is a total e�ort, X∗; for which

every group’s optimal share sums up to 1. Clearly, there exists a unique equilibrium X∗ de�ned

by
P

k sk(X∗) = 1. Moreover, at the equilibrium X∗, sj(X
∗) is also the winning probability of

player j. As is easily seen from Figure 1, if X̂nj = V
wj

< X∗, then sj(X
∗) = 0 must hold, which

means only those groups with smaller marginal costs are active, i.e., exert positive e�orts. The

following lemma summarizes the result of this Tullock game with heterogeneous marginal costs

(J; (wj)
J
j=1).

Lemma 2. [Cornes and Hartley, 2005] A Tullock game with heterogeneous marginal costs

(J; (wj)
J
j=1) has a unique equilibrium X∗ at

P
j sj(X

∗) = 1. Moreover, there exists j∗ such

that, for each j = 1; :::; j∗, Xj = X∗ − wj(X∗)2

V
, and for each j = j∗ + 1; :::; J , X̂nj ≤ X∗ (orP

k sk(X̂nj ) ≥ 1) and Xj = 0con



Theorem 1. Given a team pro�le ’, there exists a unique equilibrium in the inter-team contest

for any partition of players � = {N1; :::; NJ} characterized by the share function s(X∗) = 1.

There is j∗ ∈ {1; :::; J} such that P ∗
j = sj(X

∗) > 0 (active teams) for all j ≤ j∗ ( X̂j > X∗),

while P ∗
j = sj(X

∗) = 0 (inactive teams) for all j > j∗ ( X̂j ≤ X∗). Then, team j’s winning

probability is

P ∗
j = 1 −

(j∗ − 1) 1
Aj(φj)Pj∗

k=1
1

Ak(φk)

;

player i ∈ Nj of team j = 1; :::; J obtains payo�

Uφmj
=

 V × �mP ∗
j

�
1 −

(j∗−1) 1
Aj (φj )Pj∗

k=1
1

Ak(φk)

�
aφmj θm

Aj(φj)

� σ
1−σ

�
if j ≤ j∗

0 if j > j∗
:

Moreover, the equilibrium total e�orts are

X∗ =
j∗ − 1Pj∗

k=1
1

Ak(φk)

;

and

(j∗ − 1)
1

Aj(’j)
<

j∗X
k=1

1

Ak(’k)

holds for all j = 1; :::; j∗.12

4 Stable Team Structures

In this section, we will consider the stability of a team structure generated by a given ’. We

will consider a simple concept of head-hunting : given ’mj = i′ ∈ N , a team j o�ers this position

(m; j) to another player i by replacing the incumbent player ’mj by player i. A head-hunting is

successful if (i) team j’s winning probability improves, and (ii) player i who received the o�er



get a zero payo� (Theorem 1). We have the following result (see Appendix for the proof).

Proposition 3. Suppose that ’ is immune to a successful head-hunting of unemployed workers.

Then, ai′ ≥ ai for all i′ ∈ E(’) and all i ∈ UE(’).

This proposition implies that if we are concerned about stable allocations, then we can

focus on the highest M × j∗ ability players. Given that the highest ability M × j∗ players are

employed initially, and if a head-hunting of an employed player takes place, a vacant position

in the head-hunted team and a newly unemployed player (�red by the head-hunting team)

are generated. If players are totally myopic, and head-hunting decisions are made based on

this resulting team structure, there are successful head-huntings that are unreasonable. The

following casual example illustrates the point.

Example 1. Suppose that there are three two-person teams (pairs) of players. The common

sharing rule is egalitarian so that both members of a team get 50% share. Player 1 is the highest

ability one, and player 2 is the second, and so on: player 6 is the lowest ability player. Now,

consider an assortative matching of the players: a great team (players 1 and 2), a very good

team (players 3 and 4), and a poor team (players 5 and 6). In this case, the great team has the

highest winning probability, and the very good team has the second highest winning probability.

The poor team has little chance to win. If players are myopic, there is a successful head-hunting

from this intuitively very stable ability-sorted team structure. The great team may kick out

player 2, and head-hunt player 3. In this case, players 2 and 4 are left alone, and there are

e�ectively only two teams: a semi-great team with players 1 and 3 and a poor team with players

5 and 6. The former team’s winning probability jumps up close to one without having a serious

rival team. This is a successful head-hunting.

In the above example, players 2 and 4 were unemployed after head-hunting. However, it

is natural to think that these two players form a team in reaction to the head-hunting. Since

the newly unemployed worker has the highest ability, it is best for the team with the vacancy

to make an o�er to the newly unemployed player. Thus, it is natural to assume that when

team j head-hunts a player who is currently employed by team k, then team j’s �red player is

employed by team k. Team j expects that team k would hire the player �red by j, and decide

if this head-hunting is pro�table.13 Formally, we say:

De�nition 1. Let ’ is a feasible allocation, and assume that E(’) = {1; :::; Mj∗} where j∗

is the number of active teams (highest Mj∗ ability players are employed). Consider swapping

players i = ’mj and h = ’ℓk for j; k ≤ j∗, and let ’′ = (’j′)M
j′=1 be the resulting allocation,

where (i) ’′
j′ = ’j′ for all j′ ̸= j; k, (ii) ’′

j = (’1j; :::; ’m−1j; h; ’m+1j; :::; ’Mj), and (iii)

’′
k = (’1



employed player for j if (a) Pj(’
′) > Pj(’) and (b) Uh(’′) > Uh(’). We say that ’ is

stable if ’ has no successful head-hunting of neither employed nor unemployed players.

Remark 3. Note that with the above de�nition of successful head-hunting, head-hunting

team j is better o� in the Pareto sense except for the former member i who was asked to go.

This is because A(’′
j) > A(’j) implies all team member’s payo� goes up (by Theorem 1).

Thus, our successful head-hunting implies that the head-hunting team j unanimously accepts

player h’s taking position m. Alternatively, we can de�ne a successful head-hunting by giving

priorities to the team leaders’ preferences who simply want to maximize their teams’ winning

probabilities. If a team leader can assign team members to M positions freely, she assigns

them to the positions by their abilities in descending order: aφ1j
≥ aφ2j

≥ ::: ≥ aφMj
. Starting

from any membership pro�le ’j, if player h is head-hunted for position m from team k, then

she would �re ’Mj instead of ’mj by rearranging players as ’′
mj = h, and ’′

~mj = ’ ~m−1j for

all ~m = m + 1; :::; M . In this case, players ’mj; :::; ’M−1j may not be better o� by player h’s

joining the team. We can modify our stability concept by using this de�nition of a successful

head-hunting. Our Propositions 4 and 5 are robust to this modi�cation of the de�nition of

stability.14

By Proposition 3, if E(’) = {1; :::; Mj∗} holds, then there is no successful head-hunting

from UE(’



the lowest, and the top J players are assigned to position 1 of each team, then next J players

are assigned to position 2 of each team, and so on and so forth. This means that team j is

composed of players of abilities aj, aj+J , ..., aj+(M−1)J for all j = 1; :::; J . In an interesting

coalition formation game, Morelli and Park (2016) showed this allocation to be group-stable. If

�ms are heterogeneous enough, we can show that a cyclical assignment of players over J teams

is a stable team structure. To simplify the exposition, we assume that all J teams are active

under the cyclical assignment.

We will consider a special family of �s which satis�es �m+1 = ��m for all m = 1; :::; M − 1

for � ∈ [0; 1]. We may call this rule a hierarchical sharing rule. Let � : [0; 1] → �M be such

that

�m(�) =
�m−1

1 + � + ::: + �M−1
=

(1 − �) �m−1

1 − �M

for all m = 1; :::; M . If � = 0, �1 = 1 with �m = 0 for all m = 2; :::; M , which is a monopolization

rule, while if � = 1 then it is the egalitarian rule �m = 1
M

for all m = 1; :::; M . The next

proposition shows that the hierarchical sharing rule supports the cyclical assignment allocation

for � small enough (see Appendix for the proof).

Proposition 5. Consider hierarchical sharing rules. There is �� ∈ (0; 1) such that for all

� ∈ [0; ��) >



�1 = 0:5, �2 = 0:2, and �3 = �4 = �5 = 0:1. There is a stable allocation ’1 = (1; 4; 7; 8; 9),

’2 = (2; 5; 10; 11; 12), and ’3 = (3; 6; 13; 14; 15), which is a combination of cyclical assignment

and ability sorting allocations. Their winning probabilities are: P1 = 0:369, P2 = 0:332, and

P3 = 0:299. This sharing rule assigns hierarchical shares but treats lower ranks equally. The

resulting allocation reveals that high ability players are spread over teams while low ability

players are ability sorted across teams. This pattern may mimic corporates’ worker ability

distributions.

Finally, we illustrate how our results can be extended to the case with di�erent categories of

positions and di�erent skill types of workers. So far, we assumed that all players belong to the

same category and that teams’ positions are all symmetric. However, teams may have di�erent

categories of positions, and players may have di�erent skill sets.15





team contests, although ex post each contest is played by a set of di�erent teams. Thus, each

player’s expected payo� is calculated as a weighted expected payo� of each possible draw of

team pro�le in the contests|they are playing contests with a distribution of team types in

their league.17 In the team formation stage, each player decides which position is available for

her to take based on her expected payo� comparison, and a potential team manager can enter

the market by o�ering a nonexisting sharing rule in the market if possible. This is so much

stronger equilibrium concept, and the resulting allocation is strongly stable. We are planning

to explore the properties of this free entry equilibrium in such large replica contests.

Appendix

We collect most proofs here.

Proof of Proposition 2. We compute the equilibrium e�ort level �rst. Recalling (2), we

obtain

eφmj
= Xj

�
(1 − Pj)

V

X

� 1
1−σ �

aσ
φmj

�m

� 1
1−σ

=

(
1 −

(J − 1) 1
Aj(φj)PJ

k=1
1

Ak(φk)

)
(J − 1) VPJ

k=1
1

Ak(φk)

(J − 1) 1
Aj(φj)PJ

k=1
1

Ak(φk)

V
(J−1)VPJ

k=1
1

Ak(φk)


1

1−σ �
aσ

φmj
�m

� 1
1−σ

=

(
1 −

(J − 1) 1
Aj(φj)PJ

k=1
1

Ak(φk)

)
(J − 1) VPJ

k=1
1

Ak(φk)

�
1

Aj(’j)

� 1
1−σ �

aσ
φmj

�m

� 1
1−σ

This implies that player i’s payo� is written as

Uφmj
= Pj�mV − eφmj

=

(
1 −

(J − 1) 1
Aj(φj)PJ

k=1
1

Ak(φk)

)
�mV −

(
1 −

(J − 1) 1
Aj(φj)PJ

k=1
1

Ak(φk)

)
(J − 1) VPJ

k=1
1

Ak(φk)

�
1

Aj(’j)

� 1
1−σ �

aσ
φmj

�m

� 1
1−σ

=

(
1 −

(J − 1) 1
Aj(φj)PJ

k=1
1

Ak(φk)
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Next, we present a useful lemma for the following proofs.

Lemma A1. Suppose that team j = 1; 2; :::; j∗ are active, and team j = j∗ + 1; :::; J are

inactive under assignment ’. Let k ≥ j∗ + 1 and h ≤ j∗, then we have

j∗ − 2Pj∗

j′ ̸=k,h
1

Aj′ (φj′ )

≥ j∗ − 1Pj∗

j′=1
1

Aj′ (φj′ )

≥ j∗Pj∗

j′=1
1

Aj′ (φj′ )
+ 1

Ak(φk)

:

Proof of Lemma A1. By Theorem 1, since team k is inactive we have

j∗ − 1

Ak(’k)
≥

j∗X
j′=1

1

Aj′(’j′)
:

Then

j∗X
j′=1

1

Aj′(’j′)
+

1

Ak(’k)
≤

j∗X
j′=1

1

Aj′(’j′)
+

1

j∗ − 1

j∗X
j′=1

1

Aj′(’j′)
=

j∗

j∗ − 1

j∗X
j′=1

1

Aj′(’j′)
:

Rearranging the above inequality yields j∗−1Pj∗
j′=1

1
Aj′ (φj′ )

≥ j∗Pj∗
j′=1

1
Aj′ (φj′ )

+ 1
Ak(φk)

. The remaining part

can be proved in a similar way.�

Proof of Proposition 3. Suppose not. Then, there are ’mj ∈ E(’) and i ∈ UE(’) such

that aφmj
< ai. Let the number of active teams under ’ be j∗. From Proposition 1, we

know Pj = 1 −
(j∗−1) 1

Aj (θj )Pj∗
k=1

1
Ak(θk)

and Aj(’j) =
�PM

m′=1 a
σ

1−σ
φm′j

�
σ

1−σ

m′j

� 1−σ
σ

. Thus, if team j replaces

’mj by i, the new membership pro�le denoted by ’′ yields a higher productivity Aj(’
′
j) =�PM

m′=1 a
σ

1−σ

φ′
m′j

�
σ

1−σ

m′j

� 1−σ
σ

> A



after the swapping and observe that

P ′
j = 1 −

(j∗ − 2) 1
Aj(φ′

j)Pj∗−1
k=1,k ̸=j

1
Ak(φk)

+ 1
Aj(φ′
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1
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1
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:

The last inequity holds because of 1
Aj∗ (φj∗ )

< 1
j∗−2

hPj∗−1
k=1,k ̸=j

1
Ak(φk)

+ 1
Aj(φj)

i
(team j∗ is active

under ’) and Lemma A1.�

Proof of Lemma 3. First, we consider the case where the swapping does not change the

number of active teams j∗. Note that Aj (’j) ≥ Ak(’k) means ~Aj(’j) =
PM
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σ

1−σ
φm′j

�
σ

1−σ
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. These two inequalities imply that
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Since Aj(’j) =
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