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Abstract

We consider games in which team leaders strategically choose the order of players

sent to the battle�eld in majoritarian team contests with multiple pairwise battles as

in Fu, Lu, and Pan (2015 American Economic Review). We consider one-shot order-

choice games and battle-by-battle sequential player choice games. We show that as

long as the number of players on each team is the same as the number of battles,

the equilibrium winning probability of a team and the ex ante expected e¤ort of each

player in a multi-battle contest are independent of whether players�assignments are

one-shot or battle-by-battle sequential. This equilibrium winning probability and ex

ante expected total e¤ort coincide with those where the player matching is chosen

totally randomly with an equal probability lottery by the contest organizer. Finally,

we show how player choices add subtleties to the equivalence result by examples.
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1 Introduction

In their in�uential paper on group contests, Fu, Lu, and Pan (2015) analyze a multi-battle

team contest in which players from two rival teams form pairwise matches to compete in



ton and Romano (1998) under the assumption that each individual match has an exogenously

�xed winning probability. Interestingly, they show that there is a mixed strategy equilibrium

in which both teams assign the same probability to every ordering of the players, and that the

expected winning probability is unique (von Neumann�s minimax theorem in a two-person



winning probability of a team in the totally mixed equilibrium in Hamilton and Romano

(1998) is the same as that where the contest organizer chooses a matching of players totally

randomly (Proposition 1). Using this result, we show that the totally mixed strategy Nash

equilibrium in Hamilton and Romano (1998) extends to a one-shot order choice game in

the Fu, Lu, and Pan multi-battle contest environment in which each player�s e¤ort level is

endogenously determined, and that the expected winning probability of a team is the same

when the contest organizer chooses a matching of players totally randomly (Theorem 1).

Although Fu, Lu, and Pan (2015) assume that the pairwise player matching in their multi-

battle contests is �xed, we show that their invariance result regarding the outcome (winning

probability) of each pairwise battle is more general than that� as long as a pair of players

are matched in one of the multiple battles in a team contest, the expected outcome (winning

probability) stays the same, irrespective of the rest of the matches. Thus, for any realization

of a matching as a result of (mixed strategy) equilibrium, the history independence result

for the winning probability of each pairwise match in Fu, Lu, and, Pan (2015) still follows,

resulting in the Hamilton-Romano totally random equilibrium.

More signi�cantly, we extend the equivalence results in Fu, Lu, and Pan (2015) to a

sequential battle-by-battle player-choice game. Here, the argument is much more involved�

it is not a simple extension of sequential battles in Fu, Lu, and Pan (2015). At each subgame,

the team leaders �rst choose players for the next battle, and then these players choose their

e¤ort levels. Thus, these players need to make a choice by foreseeing the outcomes in the

subsequent subgames after the realization of the current battle�s outcome. We will show, by

backward induction arguments, that the team�s ex ante winning probability in each subgame

is the same as under the totally random matching of the remaining players by the contest

organizer, thus its ex ante winning probability of the whole sequential battle-by-battle game

is also the same as the ones under the Hamilton-Romano totally random Nash equilibrium

in one-shot ordering choice game (Theorem 2). As a corollary, we can say that the ex ante

expected equilibrium e¤ort of each player is invariant of the type of player choice game� one-
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shot or sequential, since all matchings of players occur with the same ex ante probabilities

in both equilibria. Thus, we add another invariance result to Fu, Lu, and Pan (2015).

In the next subsection, we provide a brief literature review. In Section 2, we will start with

a three-battle contest example with exogenously �xed winning probabilities for each pairwise

match between players from the two teams. This illustrates the equivalence between the

outcome (ex ante team winning probability) of the one-shot game and that of the sequential

move game. In Section 3, we introduce the general model using matching language and

replicate Hamilton and Romano�s (1998) result by using matching theory (Proposition 1).

Then, in Section 4, we endogenize the winning probability of each race and show that the

same results hold for both the one-shot and sequential ordering choice game (Theorems 1

and 2, and Corollary 1). In Section 5, we discuss the boundary of our result using several

extensions and examples.

1.1 Related Literature





and thus the winning chance in each battle is independent of how many games were won/lost

before that battle.



payo¤ (winning probability) matrix for leaderA:

LeaderB

LeaderA

123 132 213 231 312 321

123 � �  � � �

132 � � �  � �

213  � � � � �

231 �  � � � �

312 � � � � � 

321 � � � �  �

where, for example,� = q11q22q33 + q11q22 (1� q33) + (1� q11) q22q33 + q11 (1� q22) q33 and

�; ; �; �; � are similarly de�ned. Notice that�; �; ; �; �; � show up exactly once for each row

and column (though some of them may take the same values).

Now, assume that leaderB plays all pure strategies with probability1





between choosing players 1, 2, or 3 in the �rst round, and in the second round he chooses the

rest of the orderings with probability1
2

for each (this is equivalent to choosing a player from

the two remaining players with probability1
2

). Clearly, leaderA will place probability1
3

for

each of his three players in the �rst round. His equilibrium payo¤ is again�PA. This discus-

sion shows that the sequential game outcome is the same as the simultaneous game outcome.

By induction, we can see that the argument works for any (odd) number of players.�

3 One-Shot Ordering Choice Game with Exogenous

Winning Probabilitiesó the Hamilton-Romano Re-

sult

There are two teams,A andB. Each team has2n + 1 players wheren 2 N . The whole

competition consists of2n+1 sequential (or simultaneous) head-to-head battles. The winning

team is the one that winsn+1 battles. There is a team leader in charge of deciding the order



We assume that the winning probability of each match of players from teamsA and

B is independent of how other players are matched and which player wins. TeamA�s

players�winning probabilities when they are matched with each of the players on teamB

are exogenously given by5

Q =

0BBB@
qi1j1 � � � qi1j2n+1

...
. . .

...

qi2n+1j1 � � � qi2n+1j2n+1

1CCCA
where a generic match is denoted by(i; j) with teamA�s (i�s) winning probability being

qij. ThisQ matrix is perfectly general. We allow for the cases in which playeri1 does well

against most of the players on teamB, buti1 somehow always loses againstj2n+1.

The static nature of the winning probability matrixQ implies that the payo¤s of this

game depend only on the resulting matching, i.e., two strategy pro�les that lead to the

same matching will result in identical payo¤s for both teams. Denote the expected payo¤s

from a given matching for each team by~P A(�) (and~P B(�) = 1� ~P A(�)) accordingly. Let

W =
�

S 2 2f1;2;:::;2n+1g : jSj � n + 1
	

.

~P A (�) �
X
S2W

 Y
r2S

�
qir�(ir)

�
�
Y
r 62S

�
1� qir�(ir)

�!
:

There are(2n + 1)! strategy pro�les
�
�A; �B

�
2 �A � �B that achieve the same matching

� 2 M(NA; NB), whereM(NA; NB) denotes the set of all possible matchings. Also note

that there are(2n + 1)! elements inM and((2n + 1)!)2 elements in�A � �B. We now

consider teamA�s winning probability when there exists a contest organizer who picks a

5In the next section, we endogenize winning probabilities in battles by considering a multi-battle contest
game following Fu, Lu, and Pan (2015).
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matchingtotally randomly to be

�P A � 1

(2n + 1)!

X
�2M(NA;NB)

~P A(�):

Since the corresponding matching for any given combination of(�A; �B) is unique, we

can slightly abuse the notation to let� : �A��B ! M(NA; NB) be the matching generated

from permutations
�
�A; �B

�
, such that�(i) = �B(

�
�A
��1

(i)) for alli 2 NA. Then,A�s ex

ante winning probability given by(�A; �B) can be written as

P A(�A; �B) � ~P A(�(�A; �B)):

Similarly, de�neP B(�A; �B). It is clear thatP A(�A; �B) + P B(�A; �B) = 1.

Thus, the game with two team leaders who maximize their teams�winning probability

is a zero-sum game with strategy sets�A and�B, and with a�A � �B payo¤ matrix

P �
�
P A(�A; �B)

�
�A2�A;�B2�B . In this case, a mixed strategy ismv : �v ll i B



for any�B 2 �B. Therefore, we obtain the result by Hamilton and Romano (1998).

Proposition 1 (Hamilton and Romano 1998)Suppose that the winning probabilities of all

pairwise battles are described by a static matrix Q. A total randomization over all orderings

of players with equal probability ( �mA; �mB) is a Nash equilibrium of the one-shot ordering-

choice game. Moreover, in every Nash equilibrium of the game, team Aís winning probability,

�P A,is exactly the same as the one when the contest organizer picks a matching of players

totally randomly.

Note that there are many other Nash equilibria in the one-shot ordering choice game,

although the equilibrium payo¤s are unique, as is shown in von Neumann (1928). For

example, consider the following2n + 1 strategies:�v
1 = (i1; :::; i2n+1),�v

2 = (i2n+1; i1; :::; i2n),

�v
2 = (i2n; i2n+1; i1; :::; i2n�1),..., and�v

2n+1 = (i2; :::; i2n+1; i1). Letm̂v bem̂v(�v
` ) = 1

2n+1
for

all` = 1; :::; 2n + 1 andm̂v(�v) = 0 for any other�v. If teamB uses strategym̂B, then each

player on teamA is matched with all of the teamB players with equal probability1
2n+1

.

Thus, teamA is indi¤erent between all strategies in�A. Therefore,m̂A is one of the best

responses tom̂B, and
�
m̂A; m̂B

�
is a Nash equilibrium, too. There are many other ways to

select2n + 1



behavior is exogenous. In this section, we relax this assumption following the arguments

in Fu, Lu, and Pan (2015). We again assume that
��NA

�� =
��NB

�� = 2n + 1 and that the

leaders of teamsA andB simultaneously choose the player ordering at the beginning of

the contest. Consider a battle between playersi 2 NA andj 2 NB. Although the same

result applies to any of the examples listed in their paper, we will focus on a variation of

a complete-information generalized Tullock contest (Model 6 in Fu, Lu, and Pan 2015). To

apply their invariance result, assume that (ij-pair-speciÖc) contest success functionqij(xi; xj)

is (i) homogenous of degree zero inxi andxj, (ii)
@qij

@xi
> 0 and



Proof. The �rst order conditions are

@qij(xi; xj)

@xi

Vi � ci = 0 (1)

and

�@qij(xi; xj)

@xj

Vj � cj = 0 (2)

Sinceqij(xi; xj) is homogenous of degree zero, we have a Euler equation

@qij(xi; xj)

@xi

xi +
@qij(xi; xj)

@xj

xj = 0:

These three equations imply
xi

xj

=
Vicj

Vjci

:

Thus, teamA�s equilibrium winning probability is written as

�qij = qij(
Vi

ci

;
Vj

cj

):

Sinceqij(xi; xj) is homogenous of degree zero,
@qij(xi;xj)

@xi
and@qij(xi;xj)

@xj
are homogeneous of

degree -1. Thus, we have
@qij(pxi; pxj)

@ (pxi)
=

1

p

@qij(xi; xj)

@xi

for allp > 0 (the same result holds forxj). This implies

@qij(pxi; pxj)

@ (pxi)
pVi � ci =

@qij(xi; xj)

@xi

Vi � ci = 0:

That is, if(xi; xj) = (x�
i (i; j); x�

j(i; j))



(xi; xj) = (px�
i (i; j); px�

j(i; j)) solves the system of equations

@qij(xi; xj)

@xi

pVi � ci = 0

and

�@qij(xi; xj)

@xj

pVj � cj = 0:

We have completed the proof.�

Thus, as long as conditions (i), (ii), and (iii) are satis�ed, the winning probability of player

i in a battle with playerj is intact at�qij, since playersi andj face the same probability

of their battle to be pivotalp in every contest with multiple pairwise battles. This is the

Observation 2 in Fu, Lu, and Pan (2015). Denote�Q(NA; NB) = (�qij)i2NA;j2NB to be the

pairwise winning probability of playeri on teamA againstj on teamB. Thus, the winning

probability of teamA in a multi-battle contest under �xed matching� is always described

by

~P A (�) �
X
S2W

 Y
r2S

�
�qir�(ir)

�
�
Y
r 62S

�
1� �qir�(ir)

��i



anyrealized matching� 2 M(NA; NB), in any battle by matched players(i; j) with�(i) = j,

teamA wins with probability�qij. Thus, teamA�s winning probability matrix is�Q(NA; NB).

This implies that by Proposition 1, (ii) and (iii) must hold.�

4.2 The Battle-by-Battle Player Choice Game

Now, we will consider sequential battle-by-battle player-choice games. Consider a states 2 S

withs =
�
k; `; h; T A; T B

�
, wherek is number of battles left, and` andh denote the number

of wins that teamsA andB need to become the winning team at states, respectively.

Moreover,T A andT B denote the set of remaining players for teamsA andB, respectively,

andS is the set of all states. Note thatk = jT Aj = jT Bj and` + h = k + 1. We use the

functionsk(s) = k,`(s) = `,h(s) = s,T A(s) = T A, andT B(s) = T B to indicate the relevant

information at states =
�
k; `; h; T A; T B

�
. We start with the following de�nition. In states,

let

�P A (s) � 1

k(s)!

X
�2M(T A(s);T B(s))

~P (�; k(s); `(s))

where

~P (�; k; `) �
X

S2W (k;`)

 Y
r2S

�
�qir�(ir)

�
�
Y
r 62S

�
1� �qir�(ir)

�!

and

W (k; `) �
�

S 2 2f1;:::;kg : jSj � `
	

:

Note thatW (k; `) is the set of winning coalitions when a team needs to win` out ofk

battles. Similar to the previous section,�P A(s) isA�s winning probability when there is a

contest organizer who totally randomly assigns players to battles after the states. We let

4(T A(s)) and4(T B(s)) be the sets of mixed actions for leaderA andB, respectively, and

de�ne�v : S ! 4(N v) such that�v(s) 2 4(T v(s)) as the mixed strategy of the leaderv.

One possible subgame perfect equilibrium strategy is��v(s) = 1
jT v(s)j(1; 1; :::; 1) 2 4T v(s) for
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v = A; B.

In each states, we need to consider every possible pair of players in the next battle. For



i andj? The payo¤ functions of playersi andj are given as

[qij(xi; xj)�qi0j0 ] Vi � cixi

and

[1� qij(xi; xj)�qi0j0 ] Vj � cjxj;

respectively. The �rst order conditions are

@qij(xi; xj)

@xi

�qi0j0Vi � ci = 0

and

�@qij(xi; xj)

@xj

�qi0j0Vj � cj = 0:

Thus,xi

xj
=

Vicj

Vjci
andqij(

cj

Vj
; ci

Vi
) = �qij. The matrix game of this subgame is described by

1
2

1
2

` = 2 jj0 j0j

1
2

ii0 �qij �qi0j0 �qij0 �qi0j

1
2

i0i �qij0 �qi0j �qij �qi0j0

Clearly, a mixed strategy pro�le with equal probability,(��A(s); ��B(s)), is an equilibrium

and is unique unless�qij �qi0j



members ofT A andT B byM(T A; T B). Similarly, denote the set of all possible matchings

between the members ofT A andT B in which playeri 2 T A is matched to playerj 2 T B

byM(T A; T B; (i; j)). Then, the continuation state when playeri wins issi
�ij = (k � 1; ` �

1; h; T Anfig; T Bnfjg) and whenj wins the state issj
�ij = (k � 1; `; h� 1; T Anfig; T Bnfjg).

We �rst show that (i) holds for anys withk(s) = k. The payo¤ functions of playersi andj

after being matched in states are

ui = qij(xi; xj) �P A
�
si

�ij

�
Vi + (1� qij(xi; xj)) �P A

�
sj

�ij

�
Vi �



1

k

X
j2T B

�
�qij

�P A(si
�ij) + (1� �qij) �P A(sj

�ij)
�

=
1

k

X
j2T B

24�qij
1

(k � 1)!

X
�2M(T A(si

�ij);T B(si
�ij))

~P (�; k � 1; l � 1)

35
+

1

k

X
j2T B

264(1� �qij)
1

(k � 1)!

X
�2M(T A(sj

�ij);T B(sj
�ij))

~P (�; k � 1; l)

375

=
1

k!

X
j2T B

X
�2M(T A(si

�ij);T B(si
�ij))

�qij
~P (�; k � 1; l � 1)

+
1

k!

X
j2T B

X
�2M(T A(sj

�ij);T B(sj
�ij))

(1� �qij) ~P (�; k � 1; l)

=
1

k!

X
j2T B

X
�2M(T A�fig;T B�fjg)

h
�qij

~P (�; k � 1; l � 1) + (1� �qij) ~P (�; k � 1; l)
i

=
X

j2T B

1

k

24 1

(k � 1)!

X
�2M(T A;T B ;(i;j))

~P (�; k; l)

35 = �P A(s)

whereM(T A; T B; (i; j)) is a collection of all matchings� : T A ! T B with�(i) = j.



the same probability1
(k�1)!

.



states occurs with probability

P (s) =
X

~�2M(NAnT A(s);NBnT B(s))

X
S2D(2n+1�k(s);n+1�`(s))

Y
r2S

�
�qir ~�(ir)

�
�
Y
r 62S

�
1� �qir ~�(ir)

�
;

playeri�s expected e¤ort wheni is matched withj is

E(xij(i; j)) =
X

s2Sj(i;j)2T A(s)�T B(s)

P (s)p(s; (i; j))x�
i (i; j)

=
X

~�2M(NAnfig;NBnfjg)

X
S2D(2n;n)

Y
r2S

�
�qir ~�(ir)

�
�
Y
r 62S

�
1� �qir ~�(ir)

�
x�

i (i; j):

Thus, the coe¢ cient ofx�
i (i; j) is nothing but the probability that this battle becomes pivotal.

This implies that neither a sequential choice nor a one-shot choice makes a di¤erence. Hence,

playeri�s ex ante expected e¤ort in both cases is

E(xi) =
1

2n + 1

X
j2NB

E(xij(i; j))

=
1

2n + 1

X
j2NB

X
~�2M(NAnfig;NBnfjg)

X
S2fS02f1;:::;2ng:jS0j=ng

Y
r2S

�
�qir ~�(ir)

�
�
Y
r 62S

�
1� �qir ~�(ir)

�
x�

i (i; j);

and Fu, Lu, and Pan�s (2015) total e¤ort equivalence result extends to our case, too.

Corollary 1. The expected e¤ort level of each player in a one-shot ordering choice game is

equal to the level in a battle-by-battle sequential choice game.

Although we only considered a fully sequential player-choice game in Theorem 2, Fu,

Lu, and Pan�s (2015) invariance results hold even if the game involves battles with a more

general temporal structure, although the argument gets messier by that (see Appendix for

a formal analysis).
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5 Robustness and Subtleties in Our Results

Here, we consider possible extensions of our model to see the boundaries of our invariance

results. It turns out that the choices of player orderings often add more subtleties for the

results on the expected winning probability of the whole contest and ex ante e¤ort levels.

5.1 Private BeneÖts from Winning Battles

We start with a positive result in an extension discussed in Fu, Lu, and Pan (2015). First,

we consider the case where players get private bene�ts from winning their battle in addition

to their team�s winning the prize. Let playersi andj get�i
ij and�

j
ij from winning battle

(i; j). Then, playersi andj�s gross bene�ts~V i and~V j are written as

~V i = �i
ij + p(i; j)V i

~V j = �j
ij + p(i; j)V j

wherepij > 0 denotes the probability that battle(i; j) becomes pivotal. Since the above

equalities need to hold for anyp(i; j)



5.2 Heterogeneous Weights

Unlike in Fu, Lu, and Pan (2015), our player-order choice game does not preserve the in-

variance in a team�s winning probability if battles areweighted unevenly. In the last section

of Fu, Lu, and Pan (2015), they demonstrate the robustness of invariance results that allow

for component battles to carry di¤erent weights. This result follows in their model, since

each battle and the players who play in them are tied up together. However, in our game,

team leaders assign players to each battle. If a certain battle is weighted heavily, team



5.3 Excess Players

Note that we have been assuming that the number of players who participate in the2n + 1

battles from each team needs to be exactly2n + 1. Although this assumption is natural in

Fu, Lu, and Pan (2015), it is essential for our equivalence results as we can see from the

following example. For simplicity, we consider a game with an exogenous winning probability

matrix again.

Example 3. Suppose that there are three battles and teamsA andB have four and three

players, respectively. We assume the following exogenous probability matrix:

Q =

0BBBBBB@
q11 q12 q13

q21 q22 q23

q31 q32 q33

q41 q42 q43

1CCCCCCA =

0BBBBBB@
0 0:5 0:5

0 0:5 0:5

0 0:5 0:5

0:5 0 0

1CCCCCCA :

That is, player 1 on teamB is a dominant player, but players 1, 2, and 3 on teamA and

players 2 and 3 on teamB are in the exact same league. Player 4 on teamA is a weak player,

but is good at dealing with the dominant player 1 on teamB (an assassin). In this case, if

teamA selectsf1; 2; 3g, teamA can win only when both players that are not matched with

teamB�s dominant player win. Thus, teamA�s winning probability is0:5 � 0:5 = 0:25. If

teamA includes the assassin player 4, then it has a positive winning probability only when

the assassin player is matched with the dominant player. This implies that teamA�s winning

probability is1



�rst round, and still has players 2, 3, and 4, while teamB has players 1 and 2. TeamB

must win the next two races to win the team contest.

second race3
4

1
4

` = 1 1 2

3
4

2; 3 0:

:

3
44

44



players win, the payo¤ matrix is:

12 21

12 q11q22; (1� q11) (1� q22) q12q21; (1� q12) (1� q21)

21 q21q12; (1� q21) (1� q12) q22q11; (1� q22) (1� q11)

=

12 21



for one star player in teamA: her marginal cost is1. Consider the case where two mediocre

players were matched in battle 1 and the teamA player won. Now, two team leaders are

choosing which players play in the second battle. Essentially, teamA�s leader only has one

choice: use the star player in the second battle or not. TeamA needs to win only one more

game, so even if it loses in the second battle, it can still win with the winning probability of

the third battle. Leti2 andj2 be the second battle players, andi3 andj3 be the third battle

players. Then, the second battle�s stake is1 � qi3j3, andxi2 = (1 � qi3j3)
cj2

(ci2
+cj2)

2 . Thus,

teamA�s leader maximizes the following expected total payo¤ in this subgame.

W A2 = 3 (qi2j2 + (1� qi2j2)qi3j3)� xi2 � (1� qi2j2)xi3

= 3

�
cj2

ci2 + cj2

+
ci2

ci2 + cj2

cj3

ci3 + cj3

�
� ci3

ci3 + cj3

cj2

(ci2 + cj2)2 �
ci2

ci2 + cj2

cj3

(ci3 + cj3)2

Thus, the expected total payo¤ by settingci2 = 1 is

W A2
ci2

=1 = 3

�
2

3
+

1

3
� 1

2

�
� 1

2
� 2

9
� 1

3
� 1

8
= 2:3472

while the one by settingci3 = 1 is

W A2
ci3

=1 = 3

�
1

2
+

1

2
� 2

3

�
� 1

3
� 1

8
� 2

3
� 2

9
= 2:3102

Thus, the total randomization is not an equilibrium in this subgame. This is because if

the game ends early, the third player does not need to make any e¤ort in a battle-by-battle

player choice game. In contrast, in a one-shot ordering choice game, the total randomization

is still a Nash equilibrium since all three games are played in a one-shot game.8�

8When a team leader maximizes the total team payo¤, the game is no longer a zero-sum game. So, there



6 Conclusions

In this paper, we show that Fu, Lu, and Pan�s (2015) invariance results extend even if the

team leaders strategically choose the order in which players are sent to the battle�eld. The

independence of each battle�s winning probability extends as long as the zero homogeneity of

the contest success function of each battle is satis�ed. Additionally, somewhat surprisingly,

the total randomization of player choice at any level is the equilibrium strategy irrespective

of whether team leaders� choices are made as one-shot or battle-by-battle decisions. We

also explore the robustness and limitations of our equivalence results by investigating several

extensions: we found that considering ordering choice decisions add additional subtleties to

the model.

Appendix

Here, we formally illustrate the way to show that Theorem 2 and Corollary 1 extend for



tations of setR. Forst 2 St, let4(~�(st)) be the sets of mixed strategies for leader

� = A; B, and de�ne��
t : St ! 4(~��(st)) such that��

t (st) 2 (~��(st)) as the mixed

strategy of the leader� at statest. One possible subgame perfect equilibrium strategy is

���
t (st) = 1

j~��(st)j(1; 1; :::; 1) 2 4(~��(st)) for� = A; B, and allt = 1; :::; �t. Finally, for any

action��
t 2 ~��(st); we denote�R(��

t ) � T �(st) as the set of players involved in the action��
t .

In order to generalize Theorem 2, we set an induction hypothesis: in each statest 2

St, (i) subgame perfect equilibria generate each possible matching of the leftover players

�t 2 M(T A; T B) occurs with the same probability, (ii) for all pair of players(i; j) 2 T A �

T B, equilibrium winning probability ofi is�qij�



A�s expected winning probability in the beginning of each statest 2 St is�P A(st).To show

this formally, �rst we de�ne�W (k; �) � fS 2 2f1;:::;kg j jSj = �g and

�P (�t; �) =
X

S2 �W (kt;�)

 Y
r2S

�qir�t(it)

Y
r =2S

(1� �qir�t(ir))

!
;

which is probability of winning� out ofnt battles given a matching�t. By the induction

assumptions, the expected payo¤.0569(i)6(s)-374(p)12(r)11(o)10(b)12(a)10(b)11(i)6(l)6(i)7(t)3F22 11.955 T6
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