
BOSTON COLLEGE

H ONORS THESIS

Byzantine Concensus: Theory and

Applications in a Dynamic System

Author:

Yifan Zhang

Supervisor:

Lewis Tseng

May 19, 2021

i

BOSTON COLLEGE

Abstract

ii

Acknowledgements

Special thanks to professor Lewis Tseng for inspiring me in choosing this partic-

ular topic, believing in me, leading me to through my thesis and answering my

questions.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Preliminaries 4

3 Byzantine broadcast problems 7

4 Dynamic Systems 12

5 Bitcoin/Blockchain 15

6 Conclusion 18

Bibliography 19

1

Chapter 1

Introduction

Consensus is the task of getting all nodes in a group to agree on some speci�c value

based on the votes of each processes. All nodes must agree upon the same value

and it must be a value that was submitted by at least one of the nodes. A funda-

mental problem in distributed computing and multi-agent systems is to achieve

overall system stability, where all nodes agree on some value needed for compu-

tation, in the presence of a number of faulty processes. This often requires coor-

dinating processes to reach consensus. Byzantine consensus is the problem for n

nodes to agree on a value, despite the fact that up to f of them may behave arbi-

trarily, which is called Byzantine failures. Since Byzantine failures imply no restric-

tions they can confuse the failure detection systems, which makes fault tolerance

dif�cult. Prior works have done extensive study on Byzantine consensus problems

under various models, such as the asynchronous system [22][7][24] and the syn-

chronous [5] system. Besides faulty nodes model, there are studies on reaching

consensus under faulty links model [22][25] as well.

There exist a few variants formulations for the Byzantine consensus problem,

including Byzantine Broadcast(BB) and Byzantine Agreement(BA) problems. In

Byzantine agreement, each party has an input value, and all parties try to decide

on the same value. Lamport et al. [12] showed that more than 2/3 of the participat-

ing parties must be honest to reach consensus. Since then, Byzantine agreement

has been studied under both synchronous and asynchronous settings and in de-

terministic [9] and randomized [2][20] models.

Chapter 1. Introduction 2

Chapter 1. Introduction 3

4

Chapter 2

Preliminaries

We look at some commonly used techniques to study Byantine consensus prob-

lems, especially BCB, in dynamic system. Studies in broadcast problems generally

assume digital signatures and public-key infrastructure (PKI), and use hxi r to de-

note a messagex signed by party r

Chapter 2. Preliminaries 5

rounds. Under synchronous setting, if an honest party sends a message at the be-

ginning of some round, an honest recipient receives the message at the end of that

round. To be more speci�c, a round consists of three phases (i) nodes send mes-

sages in the current round, (ii) nodes receives messages sent at the beginning of

the current round and (iii) process the received messages and update local state.

There are a set of n t nodes in our model, and n t is the number of nodes in the sys-

tem at time t . As we have mentioned earlier, nodes can join and leave the system

anytime in a dynamic system. A node that is not faulty throughout the execution

is said to be honest and faithfully executed in the protocol. It is only assumed that

each node knows who's in the system but it does not know who is faulty. We use the

term quorum to mean the minimum number of all honest parties in round t , i.e.,

n t ¡

Chapter 2. Preliminaries 6

7

Chapter 3

Byzantine broadcast problems

As mentioned earlier, a designated sender denoted by r s has an input v i n to broad-

cast to all parties in broadcast. The broadcast problem further has several vari-

ants. The consistency and validity conditions of BA, BB and BRB are the same

as the conditions for BCB protocol, and the only difference is termination con-

dition. The Byzantine reliable broadcast [4] has a totality condition that is more

relaxed than the termination condition for Byzantine Broadcast. As shown in the

de�nitions, BCB has more relaxed requirements compared to the original byzan-

tine broadcast protocol and Byzantine reliable broadcast because it allows some

parties to decide while others do not.

De�nition 1.

Chapter 3. Byzantine broadcast problems 8

and (iii) totality: if an honest party decides a value, then every honest party decides

a value.

Now we compare different methods from studies on Byzantine broadcast prob-

lems. As mentioned earlier, there are two main variants of Byzantine consensus:

Chapter 3. Byzantine broadcast problems 11

its overlay neighbor and from the node from which it received the gossip. This

greatly reduces the number of messages generated by the protocol since nodes do

not need to be sent f Å 1 times like they do in previous protocols.

In reality, the implementation and speci�cation of Byzantine broadcast pro-

tocols can vary based on the environments. In particular, asynchronous reliable

broadcast is widely used as building blocks for other distributed computations in

reality, such as secure distributed storage. A client starts the dispersal protocol

as it decides to store a �le in a distributed storage system provided by n servers.

The �le is split into n different blocks, each one being stored by one of the n

servers. Cachin and Tessaro [6] adapted asynchronous reliable broadcast to im-

plement a simple asynchronous veri�able information dispersal scheme. A key

concept is the gateway, which is an non-faulty party through which clients access

the servers comprising the storage system. The idea is to replace the gateway by an

asynchronous reliable broadcast protocol such as [3] so that the scheme is robust

against corrupted clients, and then the server can keep its own block in memory

together with the list of hashes.

12

Chapter 4

Dynamic Systems

Byzantine consensus problems have been extensively researched in dynamic net-

works. However, many previous works assume that all nodes are fault-free , but the

network is controlled by a message adversary. Kuhn et al. [8] showed that even-

tual consensus is hard in the absence of a good initial upper bound on the size of

the network. Fugger et al. [15] proved tight lower bounds on the contraction rates

of asymptotic consensus algorithms in dynamic networks. More realistic settings

consider node failures. Augustine et al. [10] studied Byzantine agreement in dy-

namic networks and proposed randomized distributed algorithms that achieve

almost-everywhere Byzantine agreement. They assumed that the total number

of nodes in the network remains constant while both nodes and edges in the ex-

pander graph can change arbitrarily.

Instead of changing nodes and edges in an expander graph, Tseng [14] stud-

ied eventual consensus and presented a simple algorithm in both static and dy-

namic systems where nodes leave and join the system. The communication chan-

nel is assumed to be fair-loss. The message will be eventually delivered only if

both ends are fault-free. The eventual property allows us to solve the problem in

asynchronous systems with crash or even Byzantine failures. Tseng's algorithm in

a dynamic system introduced a History variable to store previous values. Tseng's

work also showed the importance to clarify the notion of "nodes currently in the

system" and n t in a dynamic system. Nodes that do not execute Join function

properly at the beginning of round t are not considered to be in the system in

Chapter 4. Dynamic Systems 13

round t . Similarly, nodes that do not properly execute Leave function at the be-

ginning of round t , including crashed nodes, are still in the system but are faulty

nodes in round t . Besides, nodes that do not leave properly, including Byzantine

nodes, are considered faulty nodes.

A dynamic system is desirable when it may not be possible or convenient to

stop the entire system to allow modi�cation to part of its hardware or software in

a large distributed system. Hence, Hao et al. [28] proposed a Dynamic PBFT based

on the �rst practical Byzantine-fault-tolerant protocol (PBFT), so that users could

add or take out any node without stopping the whole system. They assume that

each node has three states: Benign, Absent and Malicious . The state of a new node

should be initialized to Benign. If a node exit actively, the state will change to Ab-

sent. There is a primary node that is similar to the sender in a broadcast protocol.

The primary node can change in a dynamic PBFT model. The join function is a

three-phase protocol message: (1) new node j registers at the primary node; (2)

new node j multicasts a request message to all replicas; (3) nodes verify the signa-

ture upon receiving the request. Node Exit has two parts: active exit and passive

Chapter 4. Dynamic Systems 14

Changes have to be validated so that they are compatible with the existing system.

Based on the dynamic con�guration, we can determine the properties required by

languages and their environments to support the dynamic con�guration.

The following table gives an overview on models that we have discussed so far:

Model Assumptions Resilience Model Key techniques

BA [13] No cryptography:

Digital signatures:

f Ç n/3

f Ç n/2

synchronous Quorum mechanism

BB [12] No cryptography:

Digital signatures:

f Ç n/3

f Ç n

f

15

Chapter 5

Bitcoin/Blockchain

Many practical peer-to-peer systems such as Bitcoin is a dynamic system. Nakamoto

[19] introduces a peer-to-peer version of eletronic cash that allows online pay-

ments to be sent directly from one party to another. This is possible because mes-

sages are broadcast on a best effort basis, and nodes can leave and rejoin the net-

work at will. Due to the success of Bitcoin, blockchain technologies are taking

the world by storm. All nodes in the blockchain have equal status. Theses nodes

achieve consensus by using the prior agreement of the rules and following the

principle of majority dominance.

The blockchain technology is built on top of four fundamental building blocks,

and each block has key properties achieved through speci�c mechanism: (1) Iden-

tifying the source and destination of a transaction: Users serve from digital iden-

tities called "address" to send and receive transactions. (2) Transactions: Transac-

tions are generated by the sender and broadcasted to the network of peers. Trans-

actions are invalid unless they have been recorded in the public history of transac-

tions, the blockchain; (3) Condition for auto-processing a transaction: The trans-

fer of any value with the blockchian or the execution of any function through the

blockchain should be locked by a logic conditions; (4) Consensus: updates must

be agreed by all parties. Outchakoucht et al. [1] claimed that blockchain combined

with IoT (Internet of Things) is of great importance for blockchain in the future. He

proposed a dynamic and fully distributed security policy based on blockchain. To

make the system more secure, he adopted an authorization process where new

Chapter 5. Bitcoin/Blockchain 16

nodes register, request access to nodes in the blockchain.

Chapter 5. Bitcoin/Blockchain 17

rules on join/leave protocols in a dynamic system, PoW lets new nodes join easily

but makes it dif�cult for malicious nodes to attack the system. Hence, the PoW

18

Chapter 6

Conclusion

In conclusion, Byzantine consensus problems are challenging to study but they

19

Bibliography

[1] H. Es-samaali A. Outchakoucht and J.P. Leroy. In: International Journal of

Advanced Computer Science and Applications, Vol. 8, No.7, 2017 ().

[2] Michael Ben-Or. “Another advantage of free choice (extended abstract): Com-

pletely asynchronous agreement protocols”. In: In Proceedings of the second

annual ACM symposium on Principles of distributed computing, pages 27–30

(1983).

[3] G. Bracha. “An asynchronous [(n ¡ 1)/3]-resilient consensus protocol”. In:

Proc. 3rd ACM Symposium on Principles of Distributed Computing (PODC)

(1984).

[4] G. Bracha and S. Toueg. “Asynchronous consensus and broadcast proto-

cols”. In: Journal of the ACM (1985). DOI : https: / /doi .org/10.1145/

4221.214134.

[5] M. Bravo, G.Chockler, and A. Gotsman. “Making Byzantine Consensus Live”.

In: 34th International Symposium on Distributed Computing (DISC 2020)

(2020). DOI :

https://doi.org/https://doi.org/10.1145/4221.214134
https://doi.org/https://doi.org/10.1145/4221.214134
https://doi.org/10.4230/LIPIcs.DISC.2020.23

Bibliography 20

[8] Y. Moses F. Kuhn and R. Oshman. “Coordinated consensus in dynamic net-

works”. In: Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium

on Principles of distributed computing (2011).

[9] M. Fischer and N. Lynch. “A lower bound for the time to assure interactive

consistency”. In: Information processing letters, 14(4):183–186 (1982).

[10] G. Pandurangan J. Augustine and P. Robinson. “Fast Byzantine agreement in

dynamic networks”. In: Proceedings of the 2013 ACM symposium on Princi-

ples of distributed computing (2013).

[11] J. Kramer and J. Magee. “Dynamic Con�guration for Distributed Systems”.

In: IEEE Transactions on Software Engineering (1985).

[12] R. Shostak L. Lamport and M. Pease. In: Concurrency: the Works of Leslie

Lamport (2019).

[13] Robert Shostak Leslie Lamport and Marshall Pease. “The Byzantine Gener-

als Problem”. In: (1982).

[14] L.Tseng. “Eventual Consensus: Applications to Storage and Blockchain”. In:

2019 57th Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton) (2019), pp. 840–846.DOI : 10.1109/ALLERTON.2019.8919675..

[15] T. Nowak M. Fugger and M. Schwarz. “Tight Bounds for Asymptotic and Ap-

proximate Consensus”. In: Proceedings of the 2018 ACM Symposium on Prin-

ciples of Distributed Computing (2018).

[16] B. Liskov M.Castro. “Practical Byzantine Fault Tolerance”. In: OSDI (1999).

[17] M.S. Paterson M.J. Fischer N.A. Lynch. “Impossibility of distributed consen-

sus with one faulty process”. In: Journal of the ACM (1985).

[18] A. Momose and L. Ren. “Optimal Communication Complexity of Byzantine

Consensus under Honest Majority”. In: (2020).

[19] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash system”. In: bit-

coin.org (2008).

https://doi.org/10.1109/ALLERTON.2019.8919675.

Bibliography 21

[20] Michael O. Rabin. “Randomized byzantine generals”. In: In Proceedings of

the 24th Annual Symposium on Foundations of Computer Science, pages 403–409

(1983).

[21] M. Reiter. “Secure agreement protocols: Reliable agreement in the presence

of faults”. In: Proc. 2nd ACM Conference on Computer and Communications

Security (1994).

[22] N. Santoro and P. Widmayer. “Agreement in synchronous networks with uniqi-

tous faults”. In: Theor. Comput. Sci (2007).

[23] S.King and S. Nadal. “PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-

Stake”. In: (2012).

[24] M. Larrea T. Crain V. Gramoli and M. Raynal. “DBFT: Ef�cient Leaderless

Byzantine Consensus and its Application to Blockchains”. In: 2018 IEEE 17th

International Symposium on Network Computing and Applications (NCA)

(2018).

[25] B. Weiss U. Schmid and I.Keidar. “Impossibility results and lower bounds

for consensus under link failures”. In: SIAM J.Comput (2009).

[26] M. Segal V. Drabkin R. Friedman. “Ef�cient Byzantine broadcast in wireless

ad-hoc networks”. In: 2005 International Conference on Dependable Systems

and Networks (DSN'05) (2005).

[27] M. Segal V. Drabkin R. Friedman. “Ef�cient Byzantine Broadcast in Wireless

ad-hoc Networks”. In: 2005 International Conference on Dependable Systems

and Networks (DSN'05) (2005).

[28] L. Zhiqiang L. Zhen X. Hao L. Yu and G. Dawu. “Dynamic Practical Byzantine

Fault tolerance”. In: 2018 IEEE Conference on Communications and Network

Security (CNS)(2018).

	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Byzantine broadcast problems
	Dynamic Systems
	Bitcoin/Blockchain
	Conclusion
	Bibliography

